Xem toàn bộ tài liệu Lớp 10 – Chân Trời Sáng Tạo: tại đây
Hoạt động khởi động trang 81 Toán lớp 10 Tập 2:
Lời giải:
Để so sánh được khả năng xảy ra của hai biến cố trên ta cần tính được xác suất xảy ra từng biến cố.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Hoạt động khám phá 1 trang 81 Toán lớp 10 Tập 2:
A: “Mặt xuất hiện có số chấm là số chẵn”;
B: “Mặt xuất hiện có số chấm là số lẻ”.
Lời giải:
Do con xúc xắc được chế tạo cân đối và đồng chất nên các mặt của nó đều có cùng khả năng xuất hiện.
Không gian mẫu của phép thử trên là: Ω = {1; 2; 3; 4; 5; 6}. Có 6 kết quả không gian mẫu.
Các kết quả thuận lợi cho biến cố A là: A = {2; 4; 6}. Có 3 kết quả xảy ra biến cố A.
Các kết quả thuận lợi cho biến cố B là: B = {1; 3; 5}. Có 3 kết quả xảy ra biến cố B.
Như vậy ta thấy khả năng xảy ra của hai biến cố là bằng nhau.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Thực hành 1 trang 82 Toán lớp 10 Tập 2:
a) “Hai mặt xuất hiện có cùng số chấm”;
b) “Tổng số chấm trên hai mặt xuất hiện bằng 9”.
Lời giải:
Do hai con xúc xắc được chế tạo cân đối và đồng chất nên các mặt của nó đều có cùng khả năng xuất hiện.
Không gian mẫu của phép thử trên là:
Ω
= {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (4; 6); (5; 1); (5; 2); (5; 3); (5; 4); (5; 5); (5; 6); {(6; 1); (6; 2); (6; 3); (6; 4); (6; 5); (6; 6)}. Có 36 kết quả không gian mẫu, tức là n(
Ω
) = 36.
a) Đặt biến cố A: “Hai mặt xuất hiện có cùng số chấm”.
Khi đó A = {(1; 1); (2; 2); (3; 3); (4; 4); (5; 5); (6; 6)}.
Số kết quả thuận lợi cho A là n(A) = 6.
Do đó, xác suất của biến cố A là:
P(A) =
6
36
=
1
6
.
b) Đặt biến cố B: “Tổng số chấm trên hai mặt xuất hiện bằng 9”
Khi đó B = {(3; 6); (4; 5); (5; 4); (6; 3)}.
Số kết quả thuận lợi cho B là n(B) = 4.
Do đó, xác suất của biến cố B là:
P(B) =
4
36
=
1
9
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Vận dụng trang 83 Toán lớp 10 Tập 2:
Lời giải:
Đang biên soạn
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Thực hành 2 trang 83 Toán lớp 10 Tập 2:
Lời giải:
Gọi thẻ của ban bạn Lan, Mai và Đào lần lượt là thẻ L, M và Đ và A là biến cố “Không bạn nào lấy đúng thẻ của mình”.
Theo sơ đồ ta có:
Có tất cả 9 kết quả có thể xảy ra nên n(
Ω
) = 6.
Trong đó có 6 kết quả thuận lợi cho A nên n(A) = 2.
Khi đó xác suất xảy ra biến cố A là: P(A) =
n
(
A
)
n
(
Ω
)
=
2
6
=
1
3
.
Vậy xác suất của biến cố “Không bạn nào lấy đúng thẻ của mình” là
1
3
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Hoạt động khám phá 2 trang 84 Toán lớp 10 Tập 2:
Lời giải:
Số kết quả chọn ngẫu nhiên 3 thẻ từ 10 thẻ là:
C
10
3
.
Do đó n(
Ω
) =
C
10
3
= 120.
Gọi A là biến cố: “Tích các số ghi trên 3 thẻ đó là số chẵn”.
Tích các số ghi trên ba thẻ đó là một số chẵn, khi trong 3 thẻ có ít nhất 1 thẻ mang số chẵn.
+) TH1: Có 1 thẻ mang số chẵn, 2 thẻ còn lại là số lẻ
Chọn 1 thẻ mang số chẵn có
C
5
1
kết quả.
2 thẻ còn lại mang số lẻ ta có:
C
5
2
kết quả.
Suy ra có
C
5
1
.
C
5
2
cách chọn 3 thẻ trong đó có 1 thẻ là số chẵn.
+) TH2: Có 2 thẻ mang số chẵn,1 thẻ mang số lẻ
Chọn 2 thẻ mang số chẵn có
C
5
2
kết quả.
1 thẻ mang số lẻ:
C
5
1
kết quả.
Suy ra có
C
5
2
.
C
5
1
cách chọn 3 thẻ trong đó có 2 thẻ là số chẵn và 1 thẻ mang số lẻ.
+) TH3: Có 3 thẻ mang số chẵn
Chọn 3 thẻ mang số chẵn có
C
5
3
kết quả.
Áp dụng quy tắc cộng có
C
5
1
.
C
5
2
+
C
5
2
.
C
5
1
+
C
5
3
= 110 kết quả.
Suy ra n(A) = 110
Vậy xác suất để xảy ra biến cố A là P(A) =
n
A
n
Ω
=
110
120
=
11
12
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Thực hành 3 trang 84 Toán lớp 10 Tập 2:
a) “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”.
b) “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4”.
Lời giải:
Không gian mẫu là: n(
Ω
) = 6.6.6 = 216.
a) Gọi A là biến cố: “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3”.
Khi đó
A
¯
là biến cố: “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc không chia hết cho 3”.
Nghĩa là số chấm xuất hiện trên ba con xúc xắc không có số nào chia hết cho 3. Do đó số chấm của 3 con xúc xắc chỉ có thể chọn trong tập {1; 2; 4; 5}. Khi đó ta có:
4.4.4 = 43 = 64 kết quả.
⇒ n(
A
¯
) = 64.
⇒ P(
A
¯
) =
n
A
¯
n
Ω
=
64
216
=
8
27
⇒ P(A) = 1 – P(
A
¯
) =
1
−
8
27
=
19
27
.
Vậy xác suất để “Tích các số chấm ở mặt xuất hiện trên ba con xúc xắc chia hết cho 3” là
19
27
.
b) Gọi B là biến cố “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4”.
Khi đó
B
¯
là biến cố: “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc nhỏ hơn hoặc bằng 4”.
Các kết quả thuận lợi cho biến cố
B
¯
là: {(1; 1; 1); (1; 1; 2); (1; 2; 1); (2; 1; 1)}.
⇒ n(
B
¯
) = 4.
⇒ P(
B
¯
) =
n
B
¯
n
Ω
=
4
216
=
1
54
.
⇒ P(B) = 1 – P(
B
¯
) =
1
−
1
54
=
53
54
.
Vậy xác suất để “Tổng các số chấm ở mặt xuất hiện trên ba con xúc xắc lớn hơn 4” là
53
54
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Thực hành 4 trang 84 Toán lớp 10 Tập 2:
a) Có ít nhất 1 bi xanh.
b) Có ít nhất 2 bi đỏ.
Lời giải:
Lấy ngẫu nhiên 4 viên bi từ hộp nên các kết quả của không gian mẫu là: n(
Ω
) =
C
12
4
= 495.
a) Gọi A là biến cố “Có ít nhất 1 bi xanh”
Khi đó
A
¯
là biến cố “Không có bi xanh” nghĩa là trong 4 bi được lấy ra chỉ có bi đỏ và bi vàng. Do đó các kết quả của biến cố
A
¯
là: n(
A
¯
) =
C
9
4
= 126.
Xác suất để xảy ra
A
¯
là: P(
A
¯
) =
n
A
¯
n
Ω
=
126
495
=
14
55
.
Xác suất để xảy ra A là: P(A) =1 – P(
A
¯
)
=
1
−
14
55
=
41
55
.
Vậy xác suất để trong 4 bi lấy ra có ít nhất 1 bi xanh là
41
55
.
b) Gọi B là biến cố “Trong 4 bi có ít nhất 2 bi đỏ”
Khi đó
B
¯
là biến cố “Trong 4 bi có 1 bi đỏ hoặc không có bi đỏ nào”:
TH1: Có 1 bi đỏ, có
C
4
1
.
C
8
3
= 224;
TH2: Không có bi đỏ, có
C
8
4
= 70;
Do đó các kết quả của biến cố
B
¯
là: n(
B
¯
) = 224 + 70 = 294.
Xác suất để xảy ra
B
¯
là: P(
B
¯
) =
n
B
¯
n
Ω
=
294
495
=
98
165
.
Xác suất để xảy ra B là: P(B) =1 – P(
B
¯
)
=
1
−
98
165
=
67
165
.
Vậy xác suất để trong 4 bi lấy ra có ít nhất 2 bi đỏ là
67
165
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Hoạt động khám phá 3 trang 84 Toán lớp 10 Tập 2:
Lời giải:
Vì trong 10kg gạo tẻ có thể có chứa rất nhiều hạt gạo tẻ (khoảng hơn 70 nghìn hạt) mà chỉ có 1 hạt gạo nếp trong đó. Do đó việc lấy ngẫu nhiên một hạt gạo từ thùng thì hạt gạo lấy ra đa số là hạt gạo tẻ.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Bài 1 trang 85 Toán lớp 10 Tập 2: Tung ba con đồng xu cân đối và đồng chất. Xác định biến cố đối của mỗi biến cố sau và tính xác suất của nó.
a) “Xuất hiện ba mặt sấp”;
b) “Xuất hiện ít nhất một mặt sấp”.
Lời giải:
a) Gọi biến cố A là biến cố “Xuất hiện ba mặt sấp”.
Khi đó biến cố đối của biến cố A là biến cố
A
¯
: “Xuất hiện ít nhất một mặt ngửa”.
Tung ba con đồng xu cân đối và đồng chất mỗi đồng xu có hai khả năng là sấp và ngửa nên không gian mẫu là:
Ω
= {(N, N, N); (N, N, S); (N, S, N); (S, N, N); (N, S, S); (S, N, S); (S, S, N); (S, S, S)}.
⇒ n(
Ω
) = 8.
Các kết quả thuận lợi cho biến cố A là (S, S, S) nên n(A) = 1.
Xác suất xảy ra biến cố A là: P(A) =
n
A
n
Ω
=
1
8
.
Xác suất xảy ra biến cố
A
¯
là: P(
A
¯
) =1 – P(A)
=
1
−
1
8
=
7
8
.
b) Gọi biến cố B là biến cố “Xuất hiện ít nhất một mặt sấp”.
Khi đó biến cố đối của biến cố B là biến cố
B
¯
: “Xuất hiện ba mặt ngửa”.
Các kết quả thuận lợi cho biến cố
B
¯
là (N, N, N) nên n(
B
¯
) = 1.
Xác suất xảy ra biến cố
B
¯
là: P(
B
¯
) =
n
B
¯
n
Ω
=
1
8
.
Xác suất xảy ra biến cố B là: P(B) =1 – P(
B
¯
)
=
1
−
1
8
=
7
8
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Bài 2 trang 85 Toán lớp 10 Tập 2: Gieo hai con xúc xắc cân đối và đồng chất. Tính xác suất của mỗi biến cố sau:
a) “Tổng số chấm xuất hiện nhỏ hơn 10”;
b) “Tích số chấm xuất hiện chia hết cho 3”
Lời giải:
Khi gieo hai con xúc xắc cân đối và đồng chất thì không gian mẫu là: n(
Ω
) = 6.6 = 36.
a) Gọi A là biến cố: “Tổng số chấm xuất hiện nhỏ hơn 10”.
Các kết quả thuận lợi cho biến cố A là: A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6); (2; 1); (2; 2); (2; 3); (2; 4); (2; 5); (2; 6); (3; 1); (3; 2); (3; 3); (3; 4); (3; 5); (3; 6); (4; 1); (4; 2); (4; 3); (4; 4); (4; 5); (5; 1); (5; 2); (5; 3); (5; 4); (6; 1); (6; 2); (6; 3)}.
⇒ n(A) = 30
Xác suất xảy ra biến cố A là: P(A) =
n
A
n
Ω
=
30
36
=
5
6
.
b) Gọi B là biến cố: “Tích số chấm xuất hiện chia hết cho 3”.
Các kết quả thuận lợi cho biến cố B là: B = {(1; 3); (1; 6); (2; 3); (2; 6); (3; 3); (3; 6); (4; 3); (4; 6); (5; 3); (5; 6); (6; 3); (6; 6); (3; 1); (6; 1); (3; 2); (6; 2); (3; 4); (6; 4); (3; 5); (6; 5)}.
⇒ n(B) = 12
Xác suất xảy ra biến cố B là: P(B) =
n
B
n
Ω
=
20
36
=
5
9
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Bài 3 trang 85 Toán lớp 10 Tập 2: Hộp thứ nhất đựng thẻ xanh, 1 thẻ đỏ và 1 thẻ vàng. Hộp thứ hai đựng 1 thẻ xanh và 1 thẻ đỏ. Các tấm thẻ có kích thước và khối lượng như nhau. Lần lượt lấy ra ngẫu nhiên từ mỗi hộp một tấm thẻ:
a) Sử dụng sơ đồ hình cây, hãy liệt kê tất cả các kết quả có thể xảy ra.
b) Tính xác suất của biến cố “Trong hai thẻ lấy ra có ít nhất 1 thẻ màu đỏ”.
Lời giải:
a) Các kết quả có thể xảy ra được biểu diễn trong sơ đồ sau:
Vậy có tất cả 6 kết quả có thể xảy ra.
b) Gọi A là biến cố “Trong hai thẻ lấy ra có ít nhất 1 thẻ màu đỏ”.
Ta có sơ đồ sau:
Có 4 kết quả thuận lợi cho biến cố A.
⇒ P(A) =
n
A
n
Ω
=
4
6
=
2
3
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Bài 4 trang 85 Toán lớp 10 Tập 2: Trong hộp có một số quả bóng màu xanh và màu đỏ có kích thước và khối lượng như nhau. An nhận thấy nếu lấy ngẫu nhiên hai quả bóng từ hộp thì xác suất để hai quả bóng này khác màu là 0,6. Hỏi xác suất để hai quả bóng lấy ra cùng màu là bao nhiêu?
Lời giải:
Gọi A là biến cố “Hai quả bóng này khác màu” và B là biến cố “Hai quả bóng này cùng màu”.
Vì trong hộp chỉ có hai loại bóng là bóng màu xanh và bóng màu đỏ nên nếu lấy ngẫu nhiên hai quả bóng bất kì thì một là hai quả bóng khác màu hoặc hai quả bóng cùng màu. Do đó B là biến cố đối của A.
Do đó P(A) + P(B) = 1
⇒ P(B) = 1 – 0,6 = 0,4.
Vậy xác suất để hai quả bóng lấy ra cùng màu là 0,4.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác:
Bài 5 trang 85 Toán lớp 10 Tập 2: Năm bạn Nhân, Lễ, Nghĩa, Trí và Tín xếp một cách ngẫu nhiên thành một hàng ngang để chụp ảnh. Tính xác suất của biến cố:
a) “Nhân và Tín không đứng cạnh nhau”;
b) “Trí không đứng ở đầu hàng”.
Lời giải:
Việc sắp xếp 5 bạn Nhân, Lễ, Nghĩa, Trí và Tín thành một hàng ngang để chụp ảnh có 5! cách xếp. Do đó không gian mẫu n(
Ω
) = 5!.
a) Gọi A là biến cố “Nhân và Tín không đứng cạnh nhau”
Khi đó
A
¯
là biến cố “Nhân và Tín đứng cạnh nhau”. Do đó có thể coi hai bạn này là một bạn.
Khi đó việc sắp xếp 5 bạn Nhân, Lễ, Nghĩa, Trí và Tín thành một hàng ngang chụp ảnh sao cho Nhân và Tín đứng cạnh nhau sẽ có 4!.2! cách xếp.
⇒ n(
A
¯
) = 4!.2!
Xác suất xảy ra
A
¯
là: P(
A
¯
) =
n
A
¯
n
Ω
=
4
!
.2
!
5
!
=
2
5
.
Vì A và
A
¯
là hai biến cố đối nên xác suất xảy ra A là P(A) =
1
−
P
(
A
¯
)
=
1
−
2
5
=
3
5
.
Vậy xác suất để “Nhân và Tín không đứng cạnh nhau” là
3
5
.
b)
Gọi B là biến cố “Trí không đứng ở đầu hàng”.
Khi đó
B
¯
là biến cố “Trí đứng ở đầu hàng”.
+) Nếu Trí đứng ở đầu hàng bên trái thì 4 bạn còn lại sẽ có 4! cách xếp.
+) Nếu Trí đứng ở đầu hàng bên phải thì 4 bạn còn lại sẽ có 4! cách xếp.
Suy ra có 4!.2 cách xếp sao cho Trí đứng ở đầu hàng.
⇒ P(
B
¯
) =
n
B
¯
n
Ω
=
4
!
.2
5
!
=
2
5
Vì B và
B
¯
là hai biến cố đối nên xác suất xảy ra B là P(B) =
1
−
P
(
B
¯
)
=
1
−
2
5
=
3
5
.
Vậy xác suất để “Trí không đứng ở đầu hàng” là
3
5
.
Lời giải Toán 10 Bài 2: Xác suất của biến cố hay, chi tiết khác: