Sách Giáo Khoa Toán lớp 9 tập 1

Một số hệ thức về cạnh và đường cao trong tam giác vuôngMột số hệ thức về cạnh và đường cao trong tam giác vuôngMột số hệ thức về cạnh và đường cao trong tam giác vuông

Một số hệ thức về cạnh và đường cao trong tam giác vuôngMột số hệ thức về cạnh và đường cao trong tam giác vuôngMột số hệ thức về cạnh và đường cao trong tam giác vuông
Một số hệ thức về cạnh và đường cao trong tam giác vuông

Một số hệ thức về cạnh và đường cao trong tam giác vuông –

Trong tam giác vuông, nếu biết hai cạnh, hoặc một cạnh và một góc nhọn thì có thể tính được các góc và các cạnh còn lại của tam giác đó hay không ? S1. Một số hệ thức về cạnh và đường cao trong tom giớc vuông Nhờ một hệ thức trong tam giác vuông, ta có thể “đo” được chiều cao của cây bằng một chiếc thước thợ. 1. Hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyềnĐịNH Lí lTrong một tam giác vuông, bình phương mỗi cạnh góc vuông bằngtích của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền.Cụ thể, trong tam giác ABC vuông tại A (h.1), ta có b* = ab’, c* = ac’. (1)Chứng minh (h.1)Xét hai tam giác vuông AHC và BAC. Hai tam giác vuông này có chung- HC AC góc nhọn C nên chúng đồng dạng với nhau. Do đó — ~~ = no suy ra AC BCAC° =BC.HC, tức là b° = a.b”. Tương tự, ta có c” = a.c.Ví dụ 1. (Định lí Py-ta-go – Một hệ quả của định lí 1)Rõ ràng, trong tam giác vuông ABC (h.1), cạnh huyền a = b + c”, do đó b’ + c* = ab’ + ac” = a(b’ + c’) = a. a = a°.Như vậy, từ định lí 1, ta cũng suy ra được định lí Py-ta-go.2. Một số hệ thức liên quan tới đường caoĐịNH LÍ 2Trong một tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích hai hình chiếu của hai cạnh góc vuông trên cạnh huyền.Cụ thể, với các quy ước ở hình 1, ta cóh = be’. (2)655. TOAN-9 – T1 + A Xét hình 1. Chứng minh AAHB ơo ACHA. Từ đó suy ra hệ thức (2).Ví dụ 2. Tính chiều cao của cây trong hình 2, biết rằng người đo đứng cách cây 2,25m và khoảng cách từ mắt người đo đến mặt đất là 1.5m. Giải. Ta có tam giác ADC vuông tại D, DB là đường cao ứng với cạnh huyền AC và AB = 1,5m. Theo định lí 2, ta cóBDo = AB. BC tức là (2.25) = 1.5. BC,suy ra(2,25)” BC = , = 3,375 (m).Vậy chiều cao của cây là AC = AB + BC = 1,5 + 3,375 = 4,875 (m).• Định lí 2 thiết lập mối quan hệ giữa đường cao ứng với cạnh huyền và các hình chiếu của hai cạnh góc vuông trên cạnh huyền của một tam giác vuông. Định lí 3 dưới đây thiết lập mối quan hệ giữa đường cao này với cạnh huyền và hai cạnh góc vuông.ĐịNH LÍ3Trong một tam giác vuông, tích hai cạnh góc vuông bằng tích củacạnh huyền và đường cao tương ứng.Với các kí hiệu trong hình 1, kết luận của định lí 3 có nghĩa là bc = ah. (3)66s.toANg .tt a Từ công thức tính diện tích tam giác, ta nhanh chóng suy ra hệ thức (3). Tuy nhiên, có thể chứng minh hệ thức (3) bằng cách khác.Xét hình 1. Hãy chứng minh hệ thức (3) bằng tam giác đồng dạng.Nhờ định lí Py-ta-go, từ hệ thức (3), ta có thể suy ra một hệ thức giữa đường cao ứng với cạnh huyển và hai cạnh góc vuông. Thật vậy, ta cóah – bc = ah – bc = b + c h = b c = , = , . hi b“c* Từ đó ta có – – 불 (4) h b- CHệ thức (4) được phát biểu thành định lí sau đây. ĐịNH LÍ4Trong một tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng các nghịch đảo của bình phương haiCạnh góc vuông.Ví dụ 3. Cho tam giác vuông trong đó các cạnh góc vuông dài 6cm và 8cm. Tính độ dài đường cao xuất phát từ đỉnh góc vuông.Giaii. (h.3)Gọi đường cao xuất phát từ đỉnh góc vuông của tam giác này là h. Theo hệ 8 thức giữa đường cao ứng với cạnh 6 huyền và hai cạnh góc vuông, ta cóHình 362.82 62.82 62 + 8, 10 > Chú ý. Trong các ví dụ và các bài tập tính toán bằng số của chươngnày, các số đo độ dài ở mỗi bài nếu không ghi đơn vị ta quy ước là cùng don vi do.6.8 2 ܓ Từ đó suy ra h” = • do đó h = to = 4,8 (cm).67 2 7 có thể em chưa biếtCác hệ thức b* = ab”, c* = ac (1) và h” = b’C'(2) (xem hình 1) còn được phát biểu dựa vào khái niệm trung bình nhân.Hệ thức (1) được phát biểu như sau :Trong một tam giác vuông, mỗi cạnh góc vuông là trung bình nhân của cạnh huyền và hình chiếu của cạnh góc vuông đó trên cạnh huyền.Tương tự, hệ thức (2) được phát biểu như sau:Trong một tam giác vuông, đường cao ứng với cạnh huyền là trung bình nhân của hai đoạn thẳng mà nó định ra trên cạnh huyền.Bời fộpHãy tính x và y trong mỗi hình sau: 1. (h.4a, b)ܠ21ܲ ܠ21ܲ” – — – — — — — –5・ а) b) Hình 42. (h.5)Hình 568 3. (h.6)Hình 64. (h.7)Hill 7Luyện fÔp5. Trong tam giác vuông với các cạnh góc vuông có độ dài là 3 và 4, kẻ đường cao ứng với cạnh huyền. Hãy tính đường cao này và độ dài các đoạn thẳng mà nó định ra trên cạnh huyền.6. Đường cao của một tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài là 1 và 2. Hãy tính các cạnh góc vuông của tam giác này.7. Người ta đưa ra hai cách vẽ đoạn trung bình nhân x của hai đoạn thẳng a, b (tức là x = ab) như trong hai hình sau :Cách 1 (h.8) Cách 2 (h.9) – ۔۔۔۔قے ۔ ۔ ح ܗ . جیمیترین قباید ” – ܚ – – ܢ a – – – – ——— Hiዘh 8 Hình 969Dựa vào các hệ thức (1) và (2), hãy chứng minh các cách vẽ trên là đúng. Gợi ý. Nếu một tam giác có đường trung tuyến ứng với một cạnh bằng nửa cạnh đó thì tam giác ấy là tam giác vuông.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4.9 / 5. Số lượt đánh giá: 1097

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Print Friendly, PDF & Email