Chương 1: Hàm số lượng giác và phương trình lượng giác

Xem toàn bộ tài liệu Lớp 11: tại đây

Sách giải toán 11 Bài 2: Phương trình lượng giác cơ bản giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 11 Đại số Bài 2 trang 18: Tìm một giá trị của x sao cho 2sinx – 1 = 0.

Lời giải:

2sinx – 1 = 0 ⇒ sin x = 1/2

⇒ một giá trị của x sao cho 2sinx – 1 = 0 là x = π/6

Lời giải:

Không có giá trị nào của x thỏa mãn phương trình sinx = -2

a) sinx = 1/3;

b) sin(x + 45o) = – √2/2.

Lời giải:

a)sin⁡x = 1/3 khi x = arcsin 1/3.

Vậy phương trình sin⁡x = 1/3 có các nghiệm là:

x = arcsin 1/3 + k2π, k ∈ Z và x = π – arcsin 1/3 + k2π, k ∈ Z

b)-√2/2 = sin⁡(-45o) nên sin⁡(x + 45o ) = (-√2)/2 ⇔ sin⁡(x+45o) = sin⁡(-45o)

Khi đó,x + 45o = -45o + k360o, k ∈ Z ⇒ x = -45o – 45o + k360o, k ∈ Z

và x + 45o = 180o – (-45o ) + k360o, k ∈ Z ⇒ x = 180o – (-45o ) – 45o + k360o,k ∈ Z

Vậy: x = -90o + k360o, k ∈ Z và x = 180o + k360o, k ∈ Z

a) cosx = (-1)/2;

b) cosx = 2/3;

c) cos(x + 30o) = √3/2.

Lời giải:

a)-1/2 = cos 2π/3 nên cos ⁡x = (-1)/2 ⇔ cos ⁡x = cos 2π/3

⇔ x = ±2π/3 + k2π, k ∈ Z

b)cos ⁡x = 2/3 ⇒ x = ± arccos 2/3 + k2π, k ∈ Z

c)√3/2 = cos30o nên cos⁡(x + 30o )= √3/2

⇔ cos⁡(x + 30o ) = cos 30o

⇔ x + 30o = ±30o + k360o, k ∈ Z

⇔ x = k360o, k ∈ Z và x = -60o + k360o, k ∈ Z

a) tanx = 1;

b) tanx = -1;

c) tanx = 0.

Lời giải:

a)tan⁡ x = 1 ⇔ tan⁡ x = tan⁡ π/4 ⇔ x = π/4 + kπ, k ∈ Z

b)tan⁡ x = -1 ⇔ tan⁡ x = tan⁡ (-π)/4 ⇔ x =(-π)/4 + kπ, k ∈ Z

c)tan⁡ x = 0 ⇔ tan⁡ x = tan⁡0 ⇔ x = kπ, k ∈ Z

a) cotx = 1;

b) cotx = -1;

c) cotx = 0.

Lời giải:

a)cot⁡ x = 1 ⇔ cot⁡ x = cot⁡ π/4 ⇔ x = π/4 + kπ, k ∈ Z

b)cot⁡ x = -1 ⇔ cot⁡ x = cot⁡ (-π)/4 ⇔ x = (-π)/4 + kπ,k ∈ Z

c)cot⁡ x = 0 ⇔ cot⁡ x = cot⁡ π/2 ⇔ x = π/2 + kπ, k ∈ Z

Bài 1 (trang 28 SGK Đại số 11): Giải các phương trình sau:

Lời giải:


Bài 2 (trang 28 SGK Đại số 11): Với những giá trị nào của x thì giá trị của các hàm số y = sin 3x và y = sin x bằng nhau?

Lời giải:

Ta có: sin 3x = sin x

Vậy với thì sin x = sin 3x.

Bài 3 (trang 28 SGK Đại số 11): Giải các phương trình sau:

Lời giải:

Vậy phương trình có họ nghiệm

b. cos 3x = cos 12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

Vậy phương trình có họ nghiệm x = ±4º + k.120º (k ∈ Z)

Vậy phương trình có hai họ nghiệm

Vậy phương trình có 4 họ nghiệm

Bài 4 (trang 29 SGK Đại số 11): Giải phương trình

Lời giải:

+ Điều kiện: sin 2x ≠ 1.

∀ n (TMDK).

+ Với k = 2n

∀ n (Không TMDK).

Vậy phương trình có họ nghiệm

Bài 5 (trang 29 SGK Đại số 11): Giải các phương trình sau:

Lời giải:

a. (Điều kiện : x – 15º ≠ k.180º với ∀ k ∈ Z)

⇔ x – 15º = 30º + k180º , k ∈ Z

⇔ x = 45º + k.180º, k ∈ Z

Vậy phương trình có họ nghiệm x = 45º + k.180º (k ∈ Z).

b. Điều kiện:

Mọi giá trị thuộc họ nghiệm đều thỏa mãn điều kiện xác định.

Vậy phương trình có họ nghiệm

* Chú ý: Nếu các bạn sử dụng máy tính, kết quả cho được là thay vì

Các bạn sử dụng kết quả nào cũng đúng vì hơn kém nhau π = 1 chu kì của hàm tan.

c. cos2x.tanx = 0

Vậy phương trình có hai họ nghiệm (k ∈ Z).

d. sin3x.cotx = 0

(Điều kiện xác định: x ≠ kπ ∀ k ∈ Z).

Kết hợp với điều kiện ta được

Vậy phương trình có các họ nghiệm

Bài 6 (trang 29 SGK Đại số 11): Với giá trị nào của x thì giá trị của các hàm số y = tan(π/4 – x) và y = tan 2x bằng nhau?

Lời giải:

Vậy với (k ∈ Z) thì

Bài 7 (trang 29 SGK Đại số 11): Giải các phương trình sau:

a. sin3x – cos5x = 0 ;

b. tan3x.tanx = 1

Lời giải:

a. sin3x – cos5x = 0

Vậy phương trình có hai họ nghiệm (k ∈ Z).

b. tan3x.tanx = 1 (Điều kiện: )

Các nghiệm thuộc họ nghiệm trên đều thỏa mãn điều kiện.

Vậy phương trình có họ nghiệm

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 967

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống