Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Sách Bài Tập Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách giải toán 11 Bài 1: Đại cương về đường thẳng và mặt phẳng giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 11 Hình học Bài 1 trang 45: Hãy vẽ thêm một vài hình biểu diễn của hình chóp tam giác.
Lời giải
Lời giải
Theo tính chất 3, nếu đường thẳng là 1 cạnh của thước có 2 điểm phân biệt thuộc mặt phẳng thì mọi điểm của đường thẳng đó thuộc mặt phẳng bàn
Khi đó, nếu rê thước mà có 1 điểm thuộc cạnh thước nhưng không thuộc mặt bàn thì bàn đó chưa phẳng và ngược lại
Trả lời câu hỏi Toán 11 Hình học Bài 1 trang 47: Cho tam giác ABC, M là điểm thuộc phần kéo dài của đoạn thẳng BC (h.2.12). Hãy cho biết M có thuộc mặt phẳng (ABC) không và đường thẳng AM có nằm trong mặt phẳng (ABC) không?
Lời giải
M ∈ BC mà BC ∈ (ABC) nên M ∈ (ABC)
Vì A ∈ (ABC) nên mọi điểm thuộc AM đều thuộc (ABC) hay AM ∈ (ABC)
Lời giải
Một điểm chung của hai mặt phẳng (SAC) và (SBD) khác điểm S là điểm I
I ∈ AC ∈ (SAC)
I ∈ BD ∈ (SBD)
Trả lời câu hỏi Toán 11 Hình học Bài 1 trang 48: Hình 2.16 đúng hay sai? Tại sao?
Lời giải
Sai Vì theo tính chất 2, có một và chỉ một mặt phẳng đi qua ba điểm không thẳng hàng
Theo hình vẽ lại có: ba điểm không thẳng hàng M, L, K vừa thuộc (ABC), vừa thuộc (P) ⇒ vô lý
Lời giải
– Hình chóp tam giác:
Các mặt bên: (SAB), (SBC), (SAC)
Các cạnh bên: SA, SB, SC
Các cạnh đáy: AB, AC, BC
– Hình chóp tứ giác:
Các mặt bên: (SAB), (SBC), (SCD), (SAD)
Các cạnh bên: SA, SB, SC, SD
Các cạnh đáy: AB, BC, CD, DA
Bài 1 (trang 53 SGK Hình học 11): Cho điểm A không nằm trên mặt phẳng (α) chứa tam giác BCD. Lấy E và F là các điểm lần lượt nằm trên các cạnh AB , AC.
a) Chứng minh đường thẳng EF nằm trong mặt phẳng (ABC).
b) Giả sử EF và BC cắt nhau tại I, chứng minh I là điểm chung của hai mặt phẳng (BCD) và (DEF).
Lời giải:
a) E ∈ AB mà AB ⊂ (ABC)
⇒ E ∈ (ABC)
F ∈ AC mà AC ⊂ (ABC)
⇒ F ∈ (ABC)
Đường thẳng EF có hai điểm E, F cùng thuộc mp(ABC) nên theo tính chất 3 thì EF ⊂ (ABC).
b) I ∈ BC mà BC ⊂ (BCD) nên I ∈ (BCD) (1)
I ∈ EF mà EF ⊂ (DEF) nên I ∈ (DEF) (2)
Từ (1) và (2) suy ra I là điểm chung của hai mặt phẳng (BCD) và (DEF).
Bài 2 (trang 53 SGK Hình học 11): Gọi M là giao điểm của đường thẳng d và mặt phẳng (α). Chứng minh M là điểm chung của (α) với bất kì mặt phẳng nào chứa d.
Lời giải:
Giả sử có mặt phẳng (β) bất kì chứa đường thẳng d.
M là điểm chung của d và (α) nên:
M ∈ (α) (1)
và M ∈ d, mà d ⊂ (P) ⇒ M ∈ (P) (2).
Từ (1) và (2) suy ra M là điểm chung của (α) và (P).
Bài 3 (trang 53 SGK Hình học 11): Cho ba đường thẳng d1, d2, d3 không cùng nằm trong một mặt phẳng và cắt nhau từng đôi một. Chứng minh ba đường thẳng trên đồng quy.
Lời giải:
Gọi I = d1 ∩ d2; (P) là mặt phẳng chứa (d1) và (d2).
Gọi d3 ∩ d1 = M; d3 ∩ d2 = N.
+ M ∈ d1, mà d1 ⊂ (P) ⇒ M ∈ (P)
+ N ∈ d2, mà d2 ⊂ (P) ⇒ N ∈ (P).
Nếu M ≠ N ⇒ d3 có hai điểm M, N cùng thuộc (P)
⇒ d3 ⊂ (P)
⇒ d1; d2; d3 đồng phẳng (trái với giả thiết).
⇒ M ≡ N
⇒ M ≡ N ≡ I
Vậy d1; d2; d3 đồng quy.
Bài 4 (trang 53 SGK Hình học 11): Cho bốn điểm A, B, C và D không đồng phẳng. Gọi GA, GB, GC, GD lần lượt là trọng tâm của các tam giác BCD, CDA, ADB, ACB. Chứng minh rằng AGA, BGB, CGC, DGD đồng qui.
Lời giải:
Gọi N là trung điểm CD.
+ GA là trọng tâm ΔBCD
⇒ GA ∈ trung tuyến BN ⊂ (ANB)
⇒ AGA ⊂ (ANB)
GB là trọng tâm ΔACD
⇒ GB ∈ trung tuyến AN ⊂ (ANB)
⇒ BGB ⊂ (ANB).
Trong (ANB): AGA không song song với BGB
⇒ AGA cắt BGB tại O
+ Chứng minh tương tự: BGB cắt CGC; CGC cắt AGA.
+ CGC không nằm trong (ANB) ⇒ AGA; BGB; CGC không đồng phẳng.
⇒ AGA; BGB; CGC đồng quy tại O
+ Chứng minh hoàn toàn tương tự: AGA; BGB; DGD đồng quy tại O
Vậy AGA; BGB ; CGC; DGD đồng quy tại O (đpcm).
Bài 5 (trang 53 SGK Hình học 11): Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song với nhau. S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm của đoạn SC.
a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB).
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM và BN đồng quy.
Lời giải:
a) + Trong mp(ABCD), AB cắt CD tại E.
E ∈ AB ⊂ (MAB) ⇒ E ∈ (MAB) ⇒ ME ⊂ (MAB)
E ∈ CD ⊂ (SCD) ⇒ E ∈ (SCD)
Mà M ∈ SC ⊂ (SCD)
⇒ ME ⊂ (SCD).
+ Trong mp(SCD), EM cắt SD tại N.
Ta có:
N ∈ SD
N ∈ EM ⊂ mp(MAB)
Vậy N = SD ∩ mp(MAB)
b) Chứng minh SO, MA, BN đồng quy:
+ Trong mặt phẳng (SAC) : SO và AM cắt nhau.
+ trong mp(MAB) : MA và BN cắt nhau
+ trong mp(SBD) : SO và BN cắt nhau.
+ Qua AM và BN xác định được duy nhất (MAB), mà SO không nằm trong mặt phẳng (MAB) nên AM; BN; SO không đồng phẳng.
Vậy SO, MA, BN đồng quy.
Bài 6 (trang 54 SGK Hình học 11): Cho bốn điểm A, B, C và D không đồng phẳng. Gọi M và N lần lượt là trung điểm của các đoạn thẳng AC và BC. Trên đoạn BD lấy điểm P sao cho BP = 2PD.
a) Tìm giao điểm của đường thẳng CD và mặt phẳng (MNP).
b) Tìm giao tuyến của hai mặt phẳng (MNP) và (ACD).
Lời giải:
a) Ta có:
⇒ NP và CD không song song với nhau.
Gọi giao điểm NP và CD là I.
I ∈ NP ⇒ I ∈ (MNP).
Mà I ∈ CD
Vậy I ∈ CD ∩ (MNP)
b) Trong mặt phẳng (ACD) thì AD và MI cắt nhau tại điểm J:
J ∈ AD ⇒ J ∈ (ACD)
J ∈ MI ⇒ J ∈ (MNP)
Vậy J là một điểm chung của hai mặt phẳng (ACD) và (MNP).
Ta đã có M là một điểm chung của hai mặt phẳng (ACD) và (MNP).
Vậy MJ = (ACD) ∩ (MNP).
Bài 7 (trang 54 SGK Hình học 11): Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I, K lần lượt là trung điểm của AD và BC.
a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD).
b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN).
Lời giải:
a) Tìm giao tuyến của mp(IBC) và mp(KAD).
Ta có :
K ∈ BC ⇒ K ∈ (IBC) ⇒ K ∈ (IBC) ∩ (KAD)
I ∈ AD ⇒ I ∈ (KAD) ⇒ I ∈ (IBC) ∩ (KAD)
Vậy KI = (IBC) ∩ (KAD)
b) Trong mp(ABD) gọi BI ∩ DM = P
⇒ P ∈ (IBC) ∩ (DMN)
Trong mặt phẳng (ACD) gọi CI ∩ DN = Q
⇒ Q ∈ (IBC) ∩ (DMN)
Vậy (IBC) ∩ (DMN) = PQ.
Bài 8 (trang 54 SGK Hình học 11): Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD, trên cạnh AD lấy điểm P không trùng với trung điểm của AD.
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD).
b) Tìm giao điểm của hia mặt phẳng (PMN) và BC.
Lời giải:
a) Trong mp(ABD): MP không song song với BD nên MP ∩ BD = E.
E ∈ MP ⇒ E ∈ (PMN)
E ∈ BD ⇒ E ∈ (BCD)
⇒ E ∈ (PMN) ∩ (BCD)
Dễ dàng nhận thấy N ∈ (PMN) ∩ (BCD)
⇒ EN = (PMN) ∩ (BCD)
b) Trong mp(BCD) : gọi giao điểm EN và BC là F.
F ∈ EN, mà EN ⊂ (PMN) ⇒ F ∈ (PMN)
⇒ F = (PMN) ∩ BC.
Bài 9 (trang 54 SGK Hình học 11): Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt BC tại E. Gọi C’ là một điểm nằm trên cạnh SC.
a) Tìm giao điểm M của CD và mp(C’AE).
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C’AE).
Lời giải:
a) Giao điểm M của CD và mp(C’AE).
Trong mp(ABCD), d cắt CD tại M, ta có:
+ M ∈ CD
+ M ∈ d ⊂ (C’AE) ⇒ M ∈ (C’AE)
Vậy M là giao điểm của CD và mp(C’AE).
b) + Trong mặt phẳng (SCD), gọi giao điểm của MC’ và SD là N.
N ∈ MC’ ⊂ (C’AE) ⇒ N ∈ (C’AE).
N ∈ SD ⊂ (SCD) ⇒ N ∈ (SCD)
⇒ N = (C’AE) ∩ (SCD).
⇒ (C’AE) ∩ (SCD) = C’N.
+ (C’AE) ∩ (SCB) = C’E.
+ (C’AE) ∩ (SAD) = AN.
+ (C’AE) ∩ (ABCD) = AE
Vậy thiết diện của hình chóp cắt bởi mặt phẳng (C’AE) là tứ giác C’NAE
Bài 10 (trang 54 SGK Hình học 11): Cho hình chóp S.ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD.
a) Tìm giao điểm N của đường thẳng CD và mp(SBM).
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC).
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC).
d) Tìm giao điểm P của SC và mặt phẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM).
Lời giải:
a) SM, CD cùng thuộc (SCD) và không song song.
Gọi N là giao điểm của SM và CD.
⇒ N ∈ CD và N ∈ SM
Mà SM ⊂ (SMB)
⇒ N ∈ (SMB)
⇒ N = (SMB) ∩ CD.
b) N ∈ CD ⊂ (ABCD)
⇒ BN ⊂ (ABCD)
⇒ AC; BN cùng nằm trong (ABCD) và không song song
Gọi giao điểm của AC và BN là H.
+ H ∈ AC ⊂ (SAC)
+ H ∈ BN ⊂ (SBM)
⇒ H ∈ (SAC) ∩ (SBM)
Dễ dàng nhận thấy giao điểm thứ hai của (SAC) và (SBM) là S
⇒ (SAC) ∩ (SBM) = SH.
c) Trong mp(SBM), gọi giao điểm của BM và SH là I, ta có:
I ∈ BM
I ∈ SH ⊂ (SAC).
⇒ I = BM ∩ (SAC).
d) Trong mp(SAC), gọi giao điểm của AI và SC là P.
+ P ∈ AI, mà AI ⊂ (AMB) ⇒ P ∈ (AMB)
⇒ P = (AMB) ∩ SC.
Lại có P ∈ SC, mà SC ⊂ (SCD) ⇒ P ∈ (SCD).
⇒ P ∈ (AMB) ∩ (SCD).
Lại có: M ∈ (SCD) (gt)
⇒ M ∈ (MAB) ∩ (SCD)
Vậy giao điểm của (MAB) và (SCD) là đường thẳng MP.