Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách Giải Sách Bài Tập Toán 11 Bài 2: Hai đường thẳng chéo nhau và hai đường thẳng song song giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 2.10 trang 67 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy là hình hình hành ABCD. Tìm giao tuyến của các cặp mặt phẳng sau đây:
a) (SAC) và (SBD);
b) (SAB) và (SCD);
c) (SAD) và (SBC).
Lời giải:
a)
Ta có:
Giả sử:
⇒ O ∈ (SAC) ∩ (SBD)
⇒ (SAC) ∩ (SBD) = SO
b) Ta có:
Ta lại có
c) Lập luận tương tự câu b) ta có ⇒ (SAD) ∩ (SBC) = Sy và Sy // AD // BC.
Bài 2.11 trang 67 Sách bài tập Hình học 11: Cho tứ diện ABCD. Trên các cạnh AB và AC lần lượt lấy các điểm M và N sao cho . Tìm giao tuyến của hai mặt phẳng (DBC) và (DMN).
Lời giải:
(h.2.29)
Trong tam giác ABC ta có:
Hiển nhiên D ∈ (DBC) ∩ (DMN)
⇒ (DBC) ∩ (DMN) = Dx ⇒ (DBC) ∩ (DMN) = Dx và DC // BC // MN
Bài 2.12 trang 67 Sách bài tập Hình học 11: Cho tứ diện ABCD. Cho I và J tương ứng là trung điểm của BC và AC , M là một điểm tùy ý trên cạnh AD.
a) Tìm giao tuyến d của hai mặt phẳng (MIJ) và (ABD)
b) Gọi N là giao điểm của BD với giao tuyến d, K là giao điểm của IN và IM. Tìm tập hợp điểm K khi M di động trên đoạn AD (M không là trung điểm của AD).
c) Tìm giao tuyến của hai mặt phẳng (ABK) và (MIJ).
Lời giải:
a)
Ta cũng có:
⇒ (MIJ) ∩ (ABD) = d = Mt và Mt // AB // IJ
b) Ta có: Mt // AB ⇒ Mt ∩ BD = N
Vì K ∈ IN ⇒ K ∈ (BCD)
Và K ∈ JM ⇒ K ∈ (ACD)
Mặt khác (BCD) ∩ (ACD) = CD do đó K ∈ CD. Do vậy K nằm trên hai nửa đường thẳng Cm và Dn thuộc đường thẳng CD. ( Để ý rằng nếu M là trung điểm của AD thì sẽ không có điểm K.)
c) Ta có:
Mà
Bài 2.13 trang 68 Sách bài tập Hình học 11: Cho tứ diện ABCD. Gọi M, N, P, Q, R và S lần lượt trung điểm của AB, CD, BC, AD, AC và BD. Chứng minh rằng tứ giác MNPQ là hình bình hành. Từ đó suy ra ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
Lời giải:
Trong tam giác ABC ta có:
MP // AC và MP = AC/2.
Trong tam giác ACD ta có:
QN // AC và QN = AC/2.
Từ đó suy ra {MP // QN}
⇒ Tứ giác MNPQ là hình bình hành.
Do vậy hai đường chéo MN và PQ cắt nhau tại trung điểm O của mỗi đường.
Tương tự: PR // QS và PR = QS = AB/2. Do đó tứ giác PQRS là hình bình hành.
Suy ra hai đường chéo RS và PQ cắt nhau tại trung điểm O của PQ và OR = OS
Vậy ba đoạn thẳng MN, PQ và RS cắt nhau tại trung điểm mỗi đoạn.
Bài 2.14 trang 68 Sách bài tập Hình học 11: Cho tứ diện ABCD có I và J lần lượt là trọng tâm các tam giác ABC và ABD. Chứng minh rằng: IJ // CD.
Lời giải:
Gọi K là trung điểm của AB.
Vì I là trọng tâm của tam giác ABC nên I ∈ KC và vì J là trọng tâm của tam giác ABD nên J ∈ KD.
Từ đó suy ra
Bài 2.15 trang 68 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy là AD và BC. Biết AD = a, BC = b. Gọi I và J lần lượt là trọng tâm của các tam giác SAD và SBC. Mặt phẳng (ADJ) cắt SB, SC lần lượt tại M, N. Mặt phẳng (BCI) cắt SA, SD lần lượt tại P, Q.
a) Chứng minh MN song song với PQ.
b) Giả sử AM cắt BP tại E; CQ cắt DN tại F. Chứng minh rằng EF song song với MN và PQ. Tính EF theo a và b.
Lời giải:
a) Ta có: I ∈ (SAD) ⇒ I ∈ (SAD) ∩ (IBC)
Vậy
Và PQ //AD // BC (1)
Tương tự: J ∈ (SBC) ⇒ J ∈ (SBC) ∩ (JAD)
Vậy
Từ (1) và (2) suy ra PQ // MN.
b) Ta có:
Do đó: EF = (AMND) ∩ (PBCQ)
Mà
Tính
EF: CP ∩ EF = K ⇒ EF = EK + KF
Từ (∗) suy ra
Tương tự ta tính được KF = 2a/5
Vậy: