Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách Giải Sách Bài Tập Toán 11 Đề toán tổng hợp chương 2 giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 2.45 trang 83 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy là hình thang ( đáy lớn AD). Gọi O la giao điểm của AC và BD, I và J lần lượt là trung điểm của SB và SC.
a) Xác định giao điểm M của AI và (SCD).
b) Chứng minh IJ // (SAD).
c) Xác định thiết diện của hình chóp cắt bởi mp (P) qua I, song song với SD và AC.
Lời giải:
a) Gọi O′ = AB ∩ CD, M = AI ∩ SO′
Ta có: M = AI ∩ (SCD)
b) IJ // BC ⇒ IJ // AD ⇒ IJ // (SAD)
c) Đường thẳng qua I song song với SD cắt BD tại K. Do
Qua K, kẻ đường thẳng song song với AC cắt DA, DC, BA lần lượt tại E, F, P.
Gọi R = IP ∩ SA. Kéo dài PI cắt SO’ tại N
Gọi L = NF ∩ SC
Ta có thiết diện là ngũ giác IREFL.
Bài 2.46 trang 83 Sách bài tập Hình học 11: Cho hình chóp S.ABCD, có đáy là hình bình hành. Gọi C’ là trung điểm của SC và M là một điểm di động trên cạnh SA. Mặt phẳng (P) di động luôn đi qua C’M và song song với BC.
a) Xác định thiết diện (P) cắt hình chóp S.ABCD. Xác định vị trí điểm M để thiết diện là hình bình hành.
b) Khi M di động trên cạnh SA, thì giao điểm của hai cạnh đối của thiết diện chạy trên đường nào?
Lời giải:
a) (P) // BC nên (P) sẽ cắt (SBC) theo giao tuyến B’C’ song song với BC.
Tương tự, (P) cắt (SAD) theo giao tuyến MN song song với AD.
Khi M trùng với trung điểm A’ của cạnh SA thì thiết diện MB’C’N’ là hình bình hành.
b) Với M không trùng với A’:
Gọi I ∈ B′M ∩ C′N. Ta có:
I ∈ B′M ⊂ (SAB), tương tự I′ ∈ C′N ⊂ (SCD)
Như vậy I ∈ Δ = (SAB) ∩ (SCD).
Bài 2.47 trang 83 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy là hình thang ABCD (có đáy nhỏ BC). Gọi M, N lần lượt là trung điểm của AB và SD, O là giao điểm của AC và DM.
a) Tìm giao điểm của MN và mặt phẳng (SAC).
b) Tìm thiết diện của hình chóp với mặt phẳng (NBC). Thiết diện đó là hình gì?
Lời giải:
(h.2.73) a) Gọi O = AC ∩ MD Trong mặt phẳng (SMB) gọi I = SO ∩ MN.
Ta có: I = (SAC) ∩ MN
b) AD // BC (BC ⊂ (SBC))
⇒ AD // (SBC). Mặt phẳng (SAD) cắt mặt phẳng (NBC) theo giao tuyến NP // AD (P ∈ SA). Ta có thiết diện cần tìm là hình thang BCNP.
Bài 2.48 trang 83 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi G1 và G2 lần lượt là trọng tâm của các tam giác SBC và SCD
Tìm giao tuyến của mặt phẳng (AG1G2) với các mặt phẳng (ABCD) và (SCD).
Xác định thiết diện của hình chóp với mặt phẳng (AG1G2).
Lời giải:
Gọi I, J lần lượt là trung điểm của BC, CD. Ta có IJ // G1G2 nên giao tuyến của hai mặt phẳng (AG1G2) và (ABCD) là đường thẳng d qua A và song song với IJ
Gọi O = IJ ∩ AC, K = G1G2 ∩ SO, L = AK ∩ SC
LG2 cắt SD tại R
LG2 cắt SB tại Q
Ta có thiết diện là tứ giác AQLR.
Bài 2.49 trang 83 Sách bài tập Hình học 11: Cho tứ diện ABCD. Trên ba cạnh AB, AC, AD lần lượt lấy các điểm B’, C’, D’ sao cho đường thẳng B’C’cắt đường thẳng BC tại K, đường thẳng C’D’ cắt đường thẳng CD tại J, đường thẳng D’B’ cắt đường thẳng DB tại I.
a) Chứng minh ba điểm I, J, K thẳng hàng.
b) Lấy điểm M ở giữa đoạn thẳng BD; điểm N ở giữa đoạn thẳng CD sao cho đường thẳng MN cắt đường thẳng BC và điểm F nằm bên trong tam giác ABC. Xác định thiết diện của tứ diện ABCD khi cắt bởi mặt phẳng (MNF).
Lời giải:
(h.2.75) a) Chú ý rằng I, J, K thẳng hàng vì chúng cùng thuộc giao tuyến của hai mặt phẳng (CBD) và (C’B’D’)
b) 4. Vì 4 điểm không đồng phẳng sẽ tạo nên 1 tứ diện => có 4 mặt
Bài 2.50 trang 84 Sách bài tập Hình học 11: Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:
MA2 + MB2 + MC2 + MD2 đạt giá trị cực tiểu.
Lời giải:
Gọi E, F lần lượt là trung điểm của AB và CD. Ta có:
Cộng (1) và (2) ta có:
Gọi J là trung điểm của EF, ta có:
Khi đó:
Vậy MA2 + MB2 + MC2 + MD2 đạt giá trị nhỏ nhất khi M ≡ J.
Bài tập trắc nghiệm