Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách Giải Sách Bài Tập Toán 11 Bài 1: Vectơ trong không gian giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 3.1 trang 129 Sách bài tập Hình học 11: Cho hình lập phương ABCDA’B’C’D’ cạnh a. Gọi O và O’ theo thứ tự là tâm của hai hình vuông ABCD và A’B’C’D’.
a) Hãy biểu diễn các vectơ AO→, AO’→, theo các vectơ có điểm đầu và điểm cuối là các đỉnh của hình lập phương đã cho.
b) Chứng minh rằng
Lời giải:
Bài 3.2 trang 129 Sách bài tập Hình học 11: Trong không gian cho điểm O và bốn điểm A, B, C, D phân biệt và không thẳng hàng. Chứng minh rằng điều kiện cần và đủ để bốn điểm A, B, C, D tạo thành một hình bình hành là:
Lời giải:
Giả sử bốn điểm A, B, C, D tạo thành một hình bình hành ta có:
Ngược lại, giả sử ta có hệ thức:
Vì A, B, C, D không thẳng hàng nên tứ giác ABCD là hình bình hành.
Bài 3.3 trang 129 Sách bài tập Hình học 11: Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho
Chứng minh rằng ba vectơ PQ→, PM→, PN→ đồng phẳng.
Lời giải:
Ta có:
vì
Bài 3.4 trang 130 Sách bài tập Hình học 11: Cho hình lăng trụ tam giác ABC.A’B’C’ có độ dài cạnh bên bằng a. Trên các cạnh bên AA’, BB’, CC’ ta lấy tương ứng các điểm M, N, P sao cho AM + BN + CP = a
Chứng minh rằng mặt phẳng (MNP) luôn luôn đi qua một điểm cố định.
Lời giải:
Gọi G và G’ lần lượt là trọng tâm của tam giác ABC và tam giác MNP . Ta có:
Cộng từng vế với vế ta có:
Vì G là trọng tâm của tam giác ABC nên
và G’ là trọng tâm của tam giác MNP nên:
Do đó:
Hay
Vì điểm G cố định và
Bài 3.5 trang 130 Sách bài tập Hình học 11: Trong không gian cho hai hình bình hành ABCD và A’B’C’D’ chỉ có chung nhau một điểm A. Chứng minh rằng các vectơ BB’→, CC’→, DD’→ đồng phẳng.
Lời giải:
Ta có:
Do đó:
Hệ thức
Bài 3.6 trang 130 Sách bài tập Hình học 11: Trên mặt phẳng (α) cho hình bình hành A1B1C1D1. Về một phía đối với mặt phẳng (α) ta dựng hình bình hành A2B2C2D2. Trên các đoạn A1A2, B1B2, C1C2, D1D2 ta lần lượt lấy các điểm A, B, C, D sao cho
Chứng minh rằng tứ giác ABCD là hình bình hành
Lời giải:
⇔ tứ giác ABCD là hình bình hành.
Bài 3.7 trang 130 Sách bài tập Hình học 11: Cho hình hộp ABCD.A’B’C’D’ có P và R lần lượt là trung điểm các cạnh AB và A’D’. Gọi P’, Q, Q’ lần lượt là tâm đối xứng của các hình bình hành ABCD, CDD’C’, A’B’C’D’, ADD’A’
a) Chứng minh rằng
b) Chứng minh hai tam giác PQR và P’Q’R’ có trọng tâm trùng nhau.
Lời giải:
b) Gọi G và G’ lần lượt là trọng tâm các tam giác PQR và P’Q’R’.
Theo câu a) ta có:
Do đó:
Vậy hai tam giác PQR và P’Q’R’ có cùng trọng tâm.