Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách Giải Sách Bài Tập Toán 11 Đề toán tổng hợp ôn tập cuối năm giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 1 trang 199 Sách bài tập Hình học 11: Cho hình chóp tứ giác đều S.ABCD. Gọi H là chân đường cao của hình chóp. Một mặt phẳng (P) thay đổi cắt các cạnh bên SA, SB, SC, SD lần lượt tại E, F, I, J. Gọi K = EI ∩ FJ. Đặt SE = a, SF = b, SI = c, SJ = d, SK = k, ∠ASH = α.
a) Tìm diện tích của tam giác SEI theo a, c, α
b) Chứng minh rằng
Suy ra
Lời giải:
Bài 2 trang 199 Sách bài tập Hình học 11: Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.
a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.
b) Gọi O là trung điểm của AB, O’ là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO’ ⊥ (SBC).
c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.
d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.
e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.
f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.
Lời giải:
Nhận xét
Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.
Như vậy: ∠(ACB) = ∠(ADB) = 1v.
a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC
BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)
Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)
Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.
Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))
AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)
Lý luận tương tự, ta có:
BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))
AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)
Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).
b) Ta có ngay O’ là trung điểm BJ
Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ
Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)
c) Ta có (SCD) ∩ (ABCD) = CD.
Gọi M = JK ∩ CD
SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)
SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)
Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.
Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.
d) ΔAIB vuông tại I nên OA = OB = OI
ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).
ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).
Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.
e) Theo chứng minh câu c.
f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).
Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn (C1) đường kính AB nằm trong mặt phẳng (B, d).
Tương tự, tập hợp J là đường tròn (C2) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).
Bài 3 trang 199 Sách bài tập Hình học 11: Cho tứ diện SABC có SA, SB, SC vuông góc với nhau từng đôi một. Gọi H là hình chiếu vuông góc của S lên mp(ABC).
a) Chứng minh rằng H là trực tâm của tam giác ABC.
b) Chứng minh rằng
c) Chứng minh rằng (SSBC)2 = (SHBC). (SABC) và
(SABC)2 = (SSAB)2 + (SSBC)2 + (SSCA)2
d) Chứng minh rằng
SG2 = (SA2 + SB2 + SC2)/9 (G là trọng tâm của tam giác ABC) và
(AB + BC + CA)2 ≤ 6(SA2 + SB2 + SC2).
e) Chứng minh rằng tam giác ABC có ba góc nhọn và
SA2tanA = SB2tanB = SC2tanC = 2SABC
Lời giải:
a) Ta chứng minh: CH ⊥ AB & AH ⊥ BC
Ta có: AB ⊥ SC (do SH ⊥ (ABC)) & AB ⊥ SH (do SC ⊥ (SAB))
⇒ AB ⊥ (SCH) ⇒ AB ⊥ CH (1)
Tương tự, ta có BC ⊥ (SAH) nên AH ⊥ BC (2)
Từ (1) và (2) cho ta H là trực tâm ΔABC.
b) Giả sử CH kéo dài cắt AB tại C’, ta có
AB ⊥ CC’ (do H là trực tâm) & AB ⊥ SC’ (do AB ⊥ (SCH))
Trong tam giác SCC’, ta có
Mà SC’ là đường cao trong tam giác vuông SAB nên
Tương tự, ta có (SSCA )2 = SHCA. SABC (7)
(SSAB )2 = SHAB. SABC (8)
Cộng (6), (7), (8) vế theo vế, ta có
Áp dụng bất đẳng thức Cô-si, ta có:
2AB. BC ≤ AB2 + BC2
2CA. AB ≤ CA2 + AB2
2BC. CA ≤ BC2 + CA2
Suy ra (AB + BC + CA)2 = AB2 + BC2 + CA2 + 2(AB.BC + BC.CA + CA.AB)
≤ 3(AB2 + BC2 + CA2)
≤ 3(SA2 + SB2 + SB2 + SC2 + SC2 + SA2)
≤ 6(SA2 + SB2 + SC2).
e) Đặt SA = a, SB = b, SC = c
Trong ΔABC, ta có:
Tương tự cosB > 0, cosC > 0.
Vậy ΔABC có ba góc nhọn.
Mặt khác, ta có:
= (a2 + b2)(a2 + c2) – a4 = a2 b2 + b2 c2 + c2 a2
= 4(SSAB2 + SSBC2 + SSCA2) = 4(SABC)2
⇒ SA2tanA = 2SABC.
Tương tự, ta có: SB2tanB = SC2tanC = 2SABC.
Vậy SA2tanA = SB2tanB = SC2tanC = 2SABC.
Bài 4 trang 200 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S lên đáy ABCD trùng với trọng tâm tam giác ABD. Mặt bên (SAB) tạo với đáy góc 60ο. Tính theo a khoảng cách từ B đến mặt phẳng (SAD)
Lời giải:
+ Xác định góc của (SAB) và mặt phẳng đáy.
Gọi G là trọng tâm tam giác ABD và E là hình chiếu của G lên AB. Ta có:
AB ⊥ SG & AB ⊥ GE⇒ AB ⊥ (SEG) ⇒ AB ⊥ SE.
SE ⊥ AB & GE ⊥ AB⇒ ∠((SAB),(ABCD)) = ∠(SEG) = 60o.
+ Xác định khoảng cách từ B đến mặt phẳng (SAD).
Hạ GN ⊥ AD. Tương tự như trên, ta có: AD ⊥ GN & AD ⊥ SG⇒ AD ⊥ (SGN)
Hạ GH ⊥ SN, ta có GH ⊥ (SAD) suy ra khoảng cách từ G đến (SAD) là GH.
+ Tính GH.
(do GE = GN). Thế vào (1) ta được:
Ta có: M ∈(SAD) & MB = 3MG⇒ d(B,(SAD)) = 3d(G,(SAD)) = (a√3)/2.
Bài 5 trang 200 Sách bài tập Hình học 11: Cho lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình thoi, AB = a√3, ∠BAD = 120o. Góc giữa đường thẳng AC’ và mặt phẳng (ADD’A’) là 30 o. Gọi M là trung điểm A’D’, N là trung điểm BB’. Tính khoảng cách từ N đến mặt phẳng (C’MA)
Lời giải:
Nhận xét:
Do tam giác A’B’D’ là tam giác đều nên C’M ⊥ A’D’
(C’A’D’) ⊥ (AA’D’D) & (C’A’D’) ∩(AA’D’D) ⇒ C’M ⊥ (AA’D’D)
Nên ∠(AC’,(AA’D’D)) = ∠(C’AM) = 30o.
Gọi K là trung điểm của DD’, ta có AKC’N là hình bình hành nên K với N đối xứng nhau qua trung điểm O của AC’. Mà O ∈ (AMC’), do đó
d[N,(C’MA)] = d[K,(C’MA)]
+ Xác định khoảng cách từ K đến (C’MA).
Do (C’MA) vuông góc với (AA’D’D) theo giao tuyến AM nên kẻ KH ⊥ AM, ta có KH ⊥ (C’MA) hay d[K,(C’MA)] = KH.
+ Tính KH.
Ta có: SAMK = SAA’D’D – (SAA’M + SMD’K + SADK) (1)
Trong tam giác AMC’, ta có: AM = C’M.cot30o = (3a√3)/2.
Trong tam giác AA’M, ta có: AA’ = √(AM2 – A’M2 ) = a√6.
Bài 6 trang 200 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh bên SA vuông góc với đáy và SC tạo với (SAD) góc 30o. Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng (SCD).
Lời giải:
+ Xác định góc của SC với (SAD).
Hạ CE ⊥ AD, ta có E là trung điểm AD và CE ⊥ (SAD) nên ∠(CSE) = 30o.
∠(CSE) cũng chính là góc giữa SC và mp(SAD).
Trong ΔCSE, ta có:
SE = CE.tan60o = a√3 ⇒ SA = √(SE2– AE2 ) = √(3a2 – a2 ) = a√2.
Nhận xét
Gọi M, N lần lượt là trung điểm của AB và AE.
Ta có MN // BE nên MN // CD. Như vậy MN // (SCD). Ta suy ra
d(M,(SCD)) = d(N,(SCD)).
Mà DN/DA = 3/4 nên d(N,(SCD)) = 3/4 d(A,(SCD))
+ Xác định khoảng cách từ A đến (SCD).
Vì vậy tam giác ACD vuông cân tại C nên CD vuông góc với AC.
CD ⊥ AC & CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ (SCD) ⊥ (SAC).
Hạ AH ⊥ SC, ta có AH ⊥ (SCD).
Trong tam giác SAC, ta có:
Bài 7 trang 200 Sách bài tập Hình học 11: Cho lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông với AB = BC = a, cạnh bên AA’ = a√2. Gọi M là trung điểm BC. Tính khoảng cách giữa hai đường thẳng AM, B’C.
Lời giải:
Gọi N là trung điểm của BB’, ta có: CB’ // MN nên CB’ // (AMN). Như vậy
d(BC’, AM) = d(B’, (AMN)) = d(B, (AMN))
(vì B, B’ đối xứng qua N ∈ (AMN)).
Hạ BH ⊥ (AMN), ta có d(B, (AMN)) = BH.
Nhận xét:
Tứ diện B.AMN có ba cạnh BA, BM, BN vuông góc nhau từng đôi một nên
Bài 8 trang 200 Sách bài tập Hình học 11: Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông cạnh a. Gọi E là điểm đối xứng của D qua trung điểm SA, M là trung điểm của AE, N là trung điểm của BC. Chứng minh rẳng MN vuông góc với BD và tính khoảng cách giữa hai đường thẳng MN và AC.
Lời giải:
Gọi P là trung điểm SA, ta có MPCN là hình bình hành.
Như vậy MN // PC, suy ra MN // (SAC).
Do BD ⊥ (SAC) nên BD ⊥ MN.
Ta có: d(MN, AC) = d(N, (SAC))
Mà C ∈(SAC) & CN/CB = 1/2
Nên d(N, (SAC)) = 1/2 d(B, (SAC)) = 1/2 BO (O là giao điểm của AC và BD).
Vậy d(N, (SAC)) = 1/4a√2.
Bài 9 trang 200 Sách bài tập Hình học 11: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB = BC = 2a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với đáy (ABC). Gọi M là trung điểm của AB, mặt phẳng qua SM song song với BC cắt AC tại N. Biết góc tạo bởi (SBC) và (ABC) là 60o. Tìm khoảng cách giữa hai đường thẳng AB và SN.
Lời giải:
Nhận xét
Gọi (α) là mặt phẳng qua SM và song song với AB.
Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.
Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.
+ Xác định khoảng cách.
Qua N kẻ đường thẳng d’ song song với AB.
Gọi (P) là mặt phẳng đi qua SN và d’.
Ta có: AB // (P).
Khi đó: d(AB, SN) = d(A, (P)).
Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:
d(AB, SN) = d(A, (SND)) = AH.
Trong tam giác SAD, ta có
Trong tam giác SAB, ta có SA = AB.tan60o = 2a√3 và AD = MN = BC/2 = a.
Thế vào (1), ta được
Bài tập trắc nghiệm trang 201, 202, 203, 204, 205 Sách bài tập Hình học 11:
Bài 1: Cho hai điểm phân biệt A, B và đường thẳng d song song với đoạn thẳng AB. Điểm C chạy trên đường thẳng d. Tập hợp các trọng tâm của tam giác ABC là
A. một đường thẳng song song với d.
B. hai đường thẳng song song với d.
C. một mặt phẳng song song với d.
D. hai mặt phẳnh song song với d.
Lời giải:
Gọi I là trung điểm của AB, khi đó I cố định và trọng tâm G của tam giác ABC thuộc trung tuyến CI sao cho IG→ = 1/3 IC→ . Do đó có thể xem G là ảnh của C qua phép vị tự tâm I, tỉ số 1/3. Vậy tập hợp các trọng tâm của tam giác ABC là đường thẳng d’ song song với d.
Chọn đáp án: A
Bài 2: Cho đường thẳng d có phương trình x + 2y – 4 = 0 trong mặt phẳng Oxy. Đường thẳng d’ là ảnh của d qua phép vị tự tâm O, tỉ số -2 có phương trình là
A. x + 2y + 2 = 0 B. -2x – 4y + 8 = 0
C. x + 2y + 4 = 0 D. x + 2y + 8 = 0
Lời giải:
Phép vị tự tâm O, tỉ số -2 biến điểm M(x;y) thành điểm M’(x’;y’) thỏa mãn
Thay x, y vào phương trình d: x + 2y – 4 = 0, ta được:
((-1)/2 x’) + 2((-1)/2 y’) – 4 = 0
⇔ -x’ – 2y’ – 8 = 0
⇔ x’ + 2y’ + 8 = 0
Chọn đáp án: D
Bài 3: Cho đường thẳng d có phương trình x + 2y – 4 = 0 trong mặt phẳng Oxy. Đường thẳng d’ là đối xứng của đường thẳng d qua trục Oy có phương trình là
A. x + 2y + 2 = 0 B. x – 4y – 8 = 0
C. x – 2y + 4 = 0 D. -x + 2y + 4 = 0
Lời giải:
Phép đối xứng qua trục Oy biến điểm M(x;y) thành điểm M’(-x;y) nên biến đường thẳng d có phương trình x + 2y – 4 = 0 thành đường thẳng d’ có phương trình -x + 2y – 4 = 0.
Chọn đáp án: C
Bài 4: Tứ diện OABC có các cạnh OA, OB, OC vuông góc với nhau từng đôi một và có OA = a, OB = b, OC = c. Khoảng cách từ điểm O tới mặt phẳng (ABC) là
Lời giải:
Chọn đáp án: C
Bài 5: Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và B. Hình thang có cạnh AD = 2a, AB = BC = a và hình chóp có cạnh SA vuông góc với mặt phẳng (ABCD). Góc ∠SCA có số đo là
A. 60ο B. 90ο
C. 30ο D. 45ο
Lời giải:
Ta có CD ⊥ AC; CD ⊥ SA ⇒ CD ⊥ (SAC) ⇒ ∠(SCD) = 90o.
Chọn đáp án: B
Bài 6: Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và B. Hình thang có cạnh AD = 2a, AB = BC = a. Hình chóp có cạnh SA = a√2 và SA vuông góc với mặt phẳng (ABCD). Khoảng cách giữa hai đường thẳng AB và SC là
A. (a√3)/3 B. a√2
C. a√6 D. (a√6)/3
Lời giải:
Gọi K là trung điểm của cạnh AD. Ta có AB // (SCK).
Dựng AH ⊥ SK, ta thấy AH chính là khoảng cách giữa AB và SC.
Ta có: AH. SK = AS. AK.
Suy ra AH = (AS.AK)/SK = (a√6)/3.
Chọn đáp án: D
Bài 7: Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a và có mặt bên SAB là tam giác nằm trong mặt phẳng vuông góc với mặt phẳng (ABCD) với SA = SB = (a√5)/2. Khoảng cách giữa hai đường thẳng SC và AB là
Lời giải:
Gọi M và N lần lượt là trung điểm của AB và CD. Vẽ MH vuông góc với SN, ta có AB // (SCD), suy ra: d(AB, SC) = d(M, SCD) = MH = (a√2)/2.
Chọn đáp án: B
Bài 8: Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA = a và vuông góc với mặt phẳng (ABCD). Mặt phẳng (α) qua A và vuông góc với SC cắt SB tại B’. Góc hợp bởi hai đường thẳng AB’ và SB có độ lớn là
A. 30ο B. 45ο
C. 60ο D. 90ο
Lời giải:
Ta có AB’ ⊥ SC; AB’⊥ BC ⇒ AB’⊥ (SBC) ⇒ ∠((AB’,SB)) = 90o.
Chọn đáp án: D
Bài 9: Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O cạnh a. Đường thẳng SO vuông góc mặt phẳng (ABCD) và đoạn SO = a/2. Khoảng cách từ A đến mặt phẳng (SBC) là
Lời giải:
Do AC = 2OC nên d(A, (SBC)) = 2d(O, (SBC)). Vẽ trung điểm M của BC và OH vuông góc với SM. Ta có:
OH ⊥ CM, OH ⊥ BC ⇒ OH ⊥ (SBC) ⇒ d(O, (SBC)) = OH = (a√2)/4.
⇒ d(A, (SBC)) = (a√2)/2.
Chọn đáp án: C
Bài 10: Hình chóp S.ABCD có đáy là hình vuông ABCD tâm O cạnh a. Đường thẳng SO vuông góc với mặt phẳng (ABCD) và đoạn SO = a/2. Gọi (α) là mặt phẳng qua AD và vuông góc với mặt phẳng (SBC). Góc giữa (α) và (ABCD) có độ lớn là
A. 30ο B. 45ο
C. 60ο D. 90ο
Lời giải:
Gọi M, N lần lượt là trung điểm của AD và BC.
Ta có OS = OM = ON. Suy ra tam giác MSN vuông cân tại S. Do SM vuông góc với (SBC) nên (SAD) chính là mặt phẳng (α) qua AD và vuông góc với mặt phẳng (SBC). Ta có góc giữa (α) và (ABCD) là ∠(SMN) = 45o.
Chọn đáp án: B
Bài 11: Cho tam giác đều SAB và hình vuông ABCD cạnh a nằm trong hai mặt phẳng vuông góc với nhau. Khoảng cách từ A đến mặt phẳng (SCD) là
Lời giải:
Gọi M và N lần lượt là trung điểm của AB và CD. Vẽ MH vuông góc với SN, ta có AB // (SCD), suy ra: d(A, (SCD)) = d(M, (SCD)) = MH.
Ta có:
Chọn đáp án: A
Bài 12: Hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, các cạnh bên đều bằng a√3. Khoảng cách từ S đến mặt phẳng (ABCD) là
Lời giải:
Do SA = SB = SC = SD nên SO vuông góc với mặt phẳng (ABCD). Ta có khoảng cách từ S đến mặt phẳng (ABCD) bằng độ dài SO và bằng (a√10)/2.
Chọn đáp án: D
Bài 13: Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Độ dài đoạn vuông góc chung của A’D’ và BC’ là
A. a/2 B. a
C. a√2 D. (a√2)/2
Lời giải:
Gọi M, N lần lượt là trung điểm của A’D và BC’, ta có MN là đoạn vuông góc chung của A’D và BC’ và có độ dài là a.
Chọn đáp án: B
Bài 14: Cho hình vuông ABCD tâm O, cạnh a. Trên hai tia Bx và Dy vuông góc với mặt phẳng (ABCD) và cùng nằm về một phía của mặt phẳng (ABCD) lần lượt lấy hai điểm M và N sao cho: BM. DN = a2/2. Đặt ∠BOM = α, ∠DON = β.
Giá trị của biểu thức T = tanα.tanβ là
A. 1 B. 2
C. 4a2 D. a2/2
Lời giải:
Chọn đáp án: A
Bài 15: Cho tam giác ABC có A(2;4), B(5;1), C(-1;-2). Phép tịnh tiến TBC→ biến tam giác ABC thành tam giác A’B’C’ có tọa độ trọng tâm G’ là
A. (4;2) B. (-4;2)
C. (-4;-2) D. (4;-2)
Lời giải:
(BC) ⃗ = (-6; -3)
Chọn đáp án: C
Bài 16: Trong mặt phẳng Oxy, tọa độ ảnh của điểm M(-6;1) qua phép quay Q(O;90ο) là
A. (6;1) B. (1;6)
C. (-6;-1) D. (-1;-6)
Lời giải:
M’(-1; -6).
Chọn đáp án: D
Bài 17: Phương trình ảnh của đường tròn (C): (x – 2)2 + (y + 3)2 = 4 qua phép đối xứng trục Oy là
A. (x + 2)2 + (y – 3)2 = 4
B. (x – 2)2 + (y – 3)2 = 4
C. (x – 2)2 + (y + 3)2 = 4
D. (x + 2)2 + (y + 3)2 = 4
Lời giải:
(C) có tâm I(2; -3) bán kính R = 2. (C’) có tâm I’(-2; -3) bán kính R’ = R = 2.
Suy ra phương trình của (C’) là (x+2)2 + (y+3)2 = 4.
Chọn đáp án: D
Bài 18: Ảnh của điểm M qua phép tịnh tiến theo vectơ u→ = (3;4) là N và ảnh của điểm N qua phép tịnh tiến theo vectơ v→ = (1;-1) là P. Độ dài của đoạn thẳng MP là
A. 5 B. √5 C. 4 D. 3
Lời giải:
Ta có MP→ = MN→ + NP→ = u→ + v→ = (4;3) ⇒ MP = 5.
Chọn đáp án: A
Bài 19: Cho tứ diện ABCD. Các điểm M, N lần lượt là trung điểm BD, AD. Các điểm H, G lần lượt là trọng tâm các tam giác BCD, ACD. Đường thẳng HG chéo với đường thẳng
A. MN B. CD C. CN D. AB
Lời giải:
Trong tam giác CMN, ta có:
Nên HG // MN. Mặt khác MN // AB nên HG // AB. Rõ ràng, CN cắt HG.
Chọn đáp án: B
Bài 20: Cho hình chóp S.ABCD, đáy ABCD là hình thang với AD // BC, BC ≤ AD, M là trung điểm SC. Mặt phẳng qua AM và song song với BC cắt đường thẳng SD tại Q. Tỉ số SQ/SD có giá trị là
A. 4/3 B. 3/4 C. 1/2 D. 1
Lời giải:
Do AD // BC nên (ADM) chính là mặt phẳng qua AM, song song với BC. Vậy giao điểm của mặt phẳng qua AM, song song với BC và đường thẳng SD chính là D.
Chọn đáp án: D
Bài 21: Cho hình chóp S.ABCD với đáy ABCD là hình bình hành. Gọi A’, B’, C’, D’ lần lượt là trung điểm các cạnh SA, SB, SC, SD. Gọi M là điểm bất kì trên BC. Thiết diện của (A’B’M’) với hình chóp S.ABCD là
A. Hình thang B. Hình bình hành
C. Hình thoi D. Hình chữ nhật
Lời giải:
Nhận xét rằng tứ giác A’B’C’D’ là hình bình hành.
Ta có: A’B’ // AB và M là điểm chung của (A’B’M) và (ABCD)
Do đó giao tuyến của (A’B’M) và (ABCD) là Mx song song với AB và A’B’.
Gọi N = Mx ∩ AD.
Vậy thiết diện là hình thang A’B’MN.
Chọn đáp án: A
Bài 22: Cho hình chóp S.ABCD với M, N lần lượt là hai điểm lấy trên các cạnh AB, CD. Gọi (α) là mặt phẳng qua MN và song song với SA. Khi đó thiết diện của hình chóp cắt bởi mặt phẳng (α) là
A. hình thang B. hình tam giác
C. hình tứ giác D. hình ngũ giác
Lời giải:
+ Mặt phẳng (α) song song với SA mà SA ⊂ (SAB), M ∈ (α) ∩ (SAB). Ta biết một điểm chung M của mặt phẳng (α) và (SAB) đồng thời biết phương của giao tuyến là phương song song với SA.
Vậy (α) ∩ (SAB) = MP với MP // SA, P thuộc SB.
+ Tương tự gọi R = AC ∩ MN là một điểm chung của (α) và (SAC) đồng thời (α) song song với SA mà SA ∈ (SAC) nên ta có (α) ∩ (SAC) = RQ, RQ // SA, Q ∈ SC. Nên đoạn giao tuyến (α) và (SCD) là đoạn QN.
+ Đoạn giao tuyến của (α) và (SBC) là PQ.
Vậy giả thiết là tứ giác MNPQ.
Chọn đáp án: C
Bài 23: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Hình chiếu song song K của G trên mặt phẳng (BCD) theo phương chiếu AD là
A. trực tâm tam giác BCD.
B. trọng tâm tam giác BCD.
C. một điểm bất kì trong tam giác BCD.
D. điểm H sao cho GH ⊥ (BCD).
Lời giải:
Từ giả thiết ta có: GK // AD, AG ∩ DK = E với E là trung điểm của BC. Từ đó ta có:
Chọn đáp án: B
Bài 24: Cho bốn điểm A, B, C, S không cùng nằm trong một mặt phẳng. Gọi I, H lần lượt là trung điểm của SA, AB. Trên SC lấy điểm K sao cho CK = 3KS. Gọi E là giao điểm của đường thẳng BC với mặt phẳng (IHK). Khẳng định nào sau đây là đúng?
Lời giải:
IH là đường trung bình trong tam giác SAB nên song song với SB. Do đó, hai mặt phẳng (SBC) và (IHK) lần lượt chứa hai đường thẳng SB, IH song song với nhau sẽ cắt nhau theo giao tuyến KE song song với SB. Khi đó:
Chọn đáp án: D
Bài 25: Cho tứ giác ABCD và một điểm S không thuộc mặt phẳng (ABCD). Trên đoạn SC lấy một điểm M không trùng với S và C. Gọi N là giao điểm của đường thẳng SD với mặt phẳng (ABM). Khẳng định nào sau đây là đúng?
A. AN = (ABM) ∩ (SAD) B. AN = (ABM) ∩ (SBC)
C. AN = (ABM) ∩ (SCD) D. AN = (ABM) ∩ (SAC)
Lời giải:
Ta có: B ∈ (ABM) ∩ (SBD) (1)
Gọi O = AC ∩ BD, K = AM ∩ SO.
Khi đó: K ∈ AM ⊂(ABM) & K ∈ SO ⊂(SBD) ⇒ K ∈ (ABM) ∩ (SBD) (2)
Từ (1) và (2) suy ra (ABM) ∩ (SBD) = BK.
Trong mặt phẳng (SBD), gọi N = BK ∩ SD.
Khi đó: N∈ SD & N ∈ BK ⊂(ABM) ⇒ N = (ABM) ∩ SD.
Dễ thấy AN = (ABM) ∩ (SAD).
Chọn đáp án: A
Bài 26: Cho hình hộp ABCD.A’B’C’D’ và các điểm M, N lần lượt thuộc các cạnh AB, DD’ (M, N không trùng với các đầu mút của các cạnh). Thiết diện của hình hộp bị cắt bởi mặt phẳng (MNB) là
A. hình thoi B. hình chữ nhật
C. hình bình hành D. hình thang cân
Lời giải:
Ta có:
(MNB) ∩ (AA’B’B) = MB
(MNB) ∩ (AA’D’D) = AN
(MNB) ∩ (DD’C’C) = NL
Trong đó L = x ∩ CC’, L ∈ x // CD, x đi qua N.
(MNB) ∩ (BB’C’C) = LB ⇒ thiết diện là tứ giác ABLN (1)
Từ (1) và (2) suy ra thiết diện cần tìm là hình bình hành.
Chọn đáp án: C
Bài 27: Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M, N lần lượt là trung điểm của SD, DC. Điểm P thay đổi trên cạnh BD, BP/BD = k. Để thiết diện của mp(MNP) và hình chóp là tứ giác thì giá trị k thỏa mãn điều kiện nào sau đây?
A. 0 ≤ k ≤ 1/2 B. 0 ≤ k ≤ 2/3
C. 1/2 ≤ k ≤ 3/4 D. 0 ≤ k ≤ 3/4
Lời giải:
Gọi G là giao điểm của AN và BD. Trong mp(ABCD), khi P thay đổi trên đoạn BG (P ≠ G), đường thẳng NP luôn cắt đoạn AB tại một điểm E (E thay đổi trên AB, E ≠ A), đường thẳng EN cắt đường thẳng AD tại I. Trong mp(SAD), đường thẳng IM cắt SA tại F. Thiết diện là tứ giác MNEF.
Khi P chạy từ G đến D, đường thẳng NP cắt đoạn AD tại I. Thiết diện là tam giác MNI.
Vậy đáp án là 0 ≤ k ≤ 2/3.
Chọn đáp án: B
Bài 28: Cho tứ diện ABCD, gọi G1, G2, G3 lần lượt là trọng tâm các tam giác ABC, ACD, ADB. Diện tích thiết diện tạo bởi mặt phẳng (G1G2G3) bằng k lần diện tích tam giác BCD. Giá trị của k là
A. 4/9 B. 2/3 C. 3/4 D. 1/2
Lời giải:
Gọi I, J, K lần lượt là trung điểm BC, CD, DB.
Ta có:
Suy ra (G1G2G3) // (BCD).
Do vậy, giao tuyến của (G1G2G3) và (ABC) là đường thẳng qua G1 song song với BC, đường thẳng này cắt AB, AC lần lượt tại M, N, MG3 ∩ AD = P. Thiết diện là tam giác MNP.
Tam giác MNP có các cạnh tương ứng song song với các cạnh của tam giác BCD và
Chọn đáp án: A
Bài 29: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a, tam giác SAB đều , SC = SD = a√3. Gọi H, K lần lượt là trung điểm của SA, SB. M là một điểm trên cạnh AD, mặt phẳng (HKM) cắt BC tại N. Đặt AM = x (0 ≤ x ≤ a). Giá trị x để diện tích thiết diện HKMN đạt giá trị nhỏ nhất là
A. x = 3a/4 B. x = a/2
C. x = 0 D. x = a.
Lời giải:
Mặt phẳng (HKM) và (ABCD) chứa hai đường thẳng song song HK và AB nên giao tuyến của chúng là MN cũng song song với HK và AB. Xét hai tam giác HAM và KBN có:
BN = AM; BK = AH; ∠(KBN) = ∠(MAH) (do ΔSBC = ΔSAD nên ΔHAM = ΔKBN)
Từ đó suy ra: MH = KN. MHKN là hình thang cân có hai đáy MN = a; HK = a/2.
Sử dụng định lý hàm số cos cho tam giác SAD ta tính được cos ∠(HAD) = (-1)/2.
Ta tính được: HM2 = HA2 + AM2 – 2HA.AM.((-1)/2) = (a2+4x2+2ax)/4.
Đường cao của hình thang cân được tính bằng công thức:
Do hai đáy có độ dài không đổi nên diện tích thiết diện bé nhất khi đường cao bé nhất đạt khi x = 0.
Chọn đáp án: C
Bài 30: Cho hai hình vuông có chung cạnh AB và nằm trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF ta lấy các điểm MN sao cho AM = BN. Mặt phẳng (P) chứa MN và song song với AB cắt AD và AF lần lượt tại M’, N’ khẳng định nào sau đây là đúng?
A. MN cắt mp(DFE) B. Tứ giác MNN’M’ là hình bình hành
C. AC, BF cắt nhau D. MN song song với mp(DEF)
Lời giải:
Ta có: (P)// AB & (P)∩(ABCD) ⇒ MM’ // AB ⇒ MM’ // EF (1)
Tương tự NN’ // EF ⇒ MM’ // NN’. Từ đó ta vẽ được các điểm M’, N’ như hình vẽ và quan sát thấy MNN’M’ mới là hình thang chưa thể là hình bình hành.
Dễ dàng quan sát thấy M’N’ // DF hoặc chứng minh được khẳng định đó như sau:
Từ (1), (2) ⇒ (MNN’M’) // (DEF) ⇒ MN // (DEF)
Chọn đáp án: D
Bài tập trắc nghiệm
Bài tập trắc nghiệm