I/ Lý thuyết & Bài tập theo bài học

Xem toàn bộ tài liệu Lớp 8: tại đây

A. Lý thuyết

1. Định lý

Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy.

Tổng quát: Δ ABC, AD là đường phân giác của góc BACˆ ( D ∈ BC )

Ta có: DB/DC = AB/AC hay DB/AB = DC/AC

Ví dụ: Cho Δ ABC có AD là đường phân giác của góc BACˆ ( D ∈ BC ) sao cho DB = 2cm, có AB = 3cm, AC = 4cm. Tính độ dài cạnh DC.

Hướng dẫn:

Áp dụng định lí trên ta có: Δ ABC, AD là đường phân giác của góc BACˆ ( D ∈ BC )

Ta có DB/AB = DC/AC hay 2/3 = DC /4 ⇒ DC = (2.4)/ 3 = 8/3 = 2,(6 ) ( cm )

2. Chú ý

Định lí vẫn đúng với đường phân giác của góc ngoài của tam giác

AE’ là phân giác của góc BAxˆ ( AB ≠ AC )

Ta có: AB/AC = E’B/E’C hay E’B/AB = E’C/AC

B. Bài tập tự luyện

Bài 1: Cho tam giác ABC vuông tại A, đường phân giác BD. Tính AB, BC biết AD = 4 cm và DC = 5 cm.

Hướng dẫn:

Áp dụng tính chất đường phân giác BD của tam giác ABC, ta có:

với t > 0

Áp dụng định lý Py – ta – go ta có:

BC2 = AC2 + AB2 hay ( 5t )2 = 92 + ( 4t )2 ⇔ ( 3t )2 = 92 ⇒ t = 3 (vì t > 0 )

Khi đó: AB = 12cm, BC = 15cm

Bài 2: Cho tam giác ABC, các đường phân giác BD và CE. Biết AD/DC = 2/3, EA/EB = 5/6. Tính các cạnh của tam giác ABC, biết chu vi của tam giác là 45cm.

Hướng dẫn:

Áp dụng tính chất của các đường phân giác BD và CE của tam giác ABC ta được:

với t > 0

Theo giả thiết ta có: PABC = AB + AC + BC = 15t = 45 ⇒ t = 3

Vậy AB = 12( cm ); BC = 18( cm ); AC = 15( cm )

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 896

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống