Xem toàn bộ tài liệu Lớp 9: tại đây
1. Quỹ tích cung chứa góc
Với đoạn thẳng AB và góc α (0 < α < 180°) cho trước thì quỹ tích các điểm M thoả mãn ∠AMB = a là hai cung chứa góc α dựng trên đoạn AB.
Chú ý:
+ Hai cung chứa góc α nói trên là hai cung tròn đối xứng nhau qua AB.
+ Hai điểm A, B được coi là thuộc quỹ tích.
+ Đặc biệt: Quỹ tích các điểm M nhìn đoạn thẳng AB cho trước dưới một góc vuông là đường tròn đường kính AB.
2. Cách vẽ cung chứa góc α
– Vẽ đường trung trực d của đoạn thẳng AB.
– Vẽ tia Ax tạo với AB một góc α.
– Vẽ đường thẳng Ay vuông góc với Ax. Gọi O là giao điểm của Ay với d.
– Vẽ cung AmB, tâm O, bán kính OA sao cho cung này nằm ở nửa mặt phẳng bờ AB không chứa tia Ax.
–
3. Cách giải bài toán quỹ tích
Muốn chứng minh quỹ tích (tập hợp) các điểm M thoả mãn tính chất T là một hình H nào đó, ta phải chứng minh hai phần:
– Phần thuận: Mọi điểm có tính chất T đều thuộc hình H.
– Phần đảo: Mọi điểm thuộc hình H đều có tính chất T.
– Kết luận: Quỹ tích các điểm M có tính chất T là hình H.
4. Ví dụ
Ví dụ 1: Từ điểm M nằm bên ngoài đường tròn (O), kẻ cát tuyến MAB đi qua O và các tiếp tuyến MC, MD. Gọi K là giao điểm của AC và BD. Chứng mình rằng: 4 điểm B, C, M, K thuộc cùng một đường tròn.
Hướng dẫn:
Ta đã biết MO là đường trung trực của CD nên AB là đường trung trực của CD
Suy ra
Mặt khác
Do đó:
Tứ giác MCBK có
Ví dụ 2: Cho hình bình hành ABCD (AB // CD) , O là giao điểm của hai đường chéo. Trên tia OA lấy điểm M sao cho OM = OB. Trên tia OB lấy điểm N sao cho ON = OA. Chứng minh rằng: 4 điểm D, M, N, C cùng thuộc một đường tròn.
Hướng dẫn:
B. Bài tập tự luận
Câu 1: Cho cung AB cố định tạo bởi các bán kính OA, OB vuông góc với nhau, điểm I chuyển động trên cung AB. Trên tia OI lấy điểm M sao cho OM bằng tổng các khoảng cách từ I đến OA và OB. Tìm quỹ tích các điểm M.
Kết luận: Quỹ tích (tập hợp) điểm M là cung AmB, một phần của cung chứa góc 45° dựng trên OB nằm bên trong góc vuông AOB.
Câu 2: Cho nửa đường tròn (O) đường kính AC. C là một điểm trên nửa đường tròn. Trên bán kính OC lấy điểm D sao cho OD bằng khoảng cách từ C đến AB.
Kết luận: Quỹ tích (tập hợp) các điểm D khi C chạy trên nửa đường tròn đường kính AB là đường tròn đường kính OP với P là điểm chính giữa cung AB.