Xem toàn bộ tài liệu Lớp 6 – Chân Trời Sáng Tạo: tại đây
Hoạt động khởi động trang 57 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Làm thế nào để tìm được tổng của hai số nguyên?
Lời giải:
Sau bài học ngày hôm nay, để tính tổng của hai số nguyên, ta làm như sau:
Muốn cộng hai số nguyên cùng dấu, ta làm như sau:
Muốn cộng hai số nguyên dương, ta cộng chúng lại như số tự nhiên.
Muốn cộng hai số nguyên âm, ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả.
Muốn cộng hai số nguyên trái dấu, ta làm như sau:
Nếu hai số nguyên đối nhau thì tổng bằng 0.
Nếu số dương lớn hơn số đối của số âm thì ta lấy số dương trừ đi số đối của số âm.
Nếu số dương bé hơn số đối của số âm thì ta lấy số đối của số âm trừ đi số dương rồi thêm dấu trừ trước kết quả.
Hoạt động khám phá trang 57 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Có thể xem con đường là một trục số với khoảng cách giữa các cột mốc là 1 m hoặc 1 km để học các phép tính về số nguyên.
a) Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên phải (theo chiều dương) 2 đơn vị đến điểm +2, sau đó di chuyển tiếp thêm về bên phải 3 đơn vị. Hãy cho biết người đó dừng lại tại điểm nào? Hãy dùng phép cộng hai số tự nhiên để biểu diễn kết quả của hành động trên.
b) Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên trái (theo chiều âm) 2 đơn vị đến điểm – 2, sau đó di chuyển tiếp về bên trái 3 đơn vị (cộng với số -3). Hãy cho biết người đó dừng lại tại điểm nào và so sánh kết quả của em với số đối của tổng (2 + 3).
Lời giải:
a) Người đó di chuyển từ số 0 sang bên phải 2 đơn vị, sau đó lại tiếp tục di chuyển sang bên phải ba đơn vị thì người đó dừng tại điểm 5.
Khi đó, ta có: (+2) + (+3 )= (+5).
b) Người đó di chuyển từ số 0 sang bên trái 2 đơn vị, sau đó di chuyển tiếp về bên trái 3 đơn vị thì người đó dừng lại tại điểm – 5.
Khi đó, ta có: (-2) + (-3) = (-5).
Ta có tổng 2 + 3 = 5.
Số đối của tổng này là – 5.
Do đó (-2) + (-3) = – (2 + 3) = (-5).
Thực hành 1 trang 57 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Thực hiện các phép tính sau:
a) 4 + 7; b) (-4) + (-7); c) (-99) + (-11);
d) (+99) + (+11); e) (-65) + (-35).
Lời giải:
a) 4 + 7 = 11;
b) (-4) + (-7) = – (4 + 7) = -11;
c) (-99) + (-11) = – (99 + 11) = -110;
d) (+99) + (+11) = 99 + 11 = 110;
e) (-65) + (-35) = – (65 + 35) = -100.
Vận dụng 1 trang 58 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Bác Hà là khách quen của cửa hàng tạp hóa nhà bác Lan nên có thể mua hàng trước, trả tiền sau. Hôm qua bác Lan đã cho bác Hà nợ 80 nghìn đồng, hôm nay bác Hà lại được bác Lan cho nợ thêm 40 nghìn đồng nữa. Em hãy dùng số nguyên để giúp bác Lan ghi vào sổ số tiền bác Hà còn nợ bác Lan.
Lời giải:
Bác Hà nợ bác Lan 80 nghìn đồng được biểu diễn là: – 80 (nghìn đồng).
Bác Hà nợ tiếp bác Lan 40 nghìn đồng được biểu diễn là: – 40 (nghìn đồng).
Tổng số tiền bác Hà nợ bác Lan là: (-80) + (-40) = – (80 + 40) = -120 (nghìn đồng).
Hoạt động khám phá 2 trang 58 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
a) Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên phải (theo chiều dương) 4 đơn vị đến điểm +4. Sau đó, người đó đổi hướng di chuyển về bên trái 4 đơn vị. Hãy cho biết người đó dừng lại tại điểm nào và thử nêu kết quả của phép tính sau: (+4) + (-4) = ?
b) Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên trái (theo chiều âm) 4 đơn vị đến điểm -4. Sau đó, người đó đổi hướng di chuyển về bên phải 4 đơn vị. Hãy cho biết người đó dừng lại tại điểm nào và hãy thử nêu kết quả của phép tính sau: (-4) + (+4) = ?
Lời giải:
a) Người đó dừng lại tại điểm 0.
Kết quả của phép tính: (+4) + (-4) = 0.
b) Người đó dừng lại tại điểm 0.
Kết quả của phép tính: (-4) + (+4) = 0.
Vận dụng 2 trang 58 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Thẻ tín dụng trả sau của bác Tám đang ghi nợ 2 000 000 đồng, sau khi bác Tám nộp vào 2 000 000 đồng thì bác Tám có bao nhiêu tiền trong tài khoản? Hãy dùng số nguyên để giải thích.
Lời giải:
Thẻ tín dụng đang ghi nợ 2 000 000 đồng được biểu diễn là: – 2 000 000 (đồng).
Bác Tám nộp vào tài khoản 2 000 000 đồng được biểu diễn là: + 2 000 000 (đồng).
Số tiền bác Tám có trong tài khoản là: (+ 2 000 000) + (-2 000 000) = 0 (đồng).
Hoạt động khám phá 3 trang 59 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
a) Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên trái (theo chiều âm) 2 đơn vị đến điểm – 2. Sau đó, người đó đổi hướng di chuyển về bên phải 6 đơn vị. Hãy cho biết người đó dừng lại tại điểm nào và hãy tìm kết quả của phép tính sau: (-2) + (+6) = ?
b) Trên trục số, một người bắt đầu từ điểm 0 di chuyển về bên phải (theo chiều dương) 2 đơn vị đến điểm + 2. Sau đó, người đó đổi hướng di chuyển về bên trái 6 đơn vị. Hãy cho biết người đó dừng lại tại điểm nào và hãy tìm kết quả của phép tính sau: (+2) + (-6) = ?
Lời giải:
a) Người đó dừng lại tại điểm + 4.
Kết quả của phép tính: (-2) + (+6) = +4.
b) Người đó dừng lại tại điểm – 4.
Kết quả của phép tính: (+2) + (-6) = – 4.
Thực hành 2 trang 60 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Thực hiện các phép tính sau:
a) 4 + (-7); b) (-5) + 12;
c) (-25) + 72; d) 49 + (-51).
Lời giải:
a) 4 + (-7) = – (7 – 3) = – 3
b) (-5) + 12 = 12 – 5 = 7
c) (-25) + 72 = 72 – 25 = 47
d) 49 + (-51) = – (51 – 49) = -2
Vận dụng 3 trang 60 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Một tòa nhà có tám tầng được đánh số theo thứ tự 0 (tầng mặt đất), 1, 2, 3, …, 7 và ba tầng hầm được đánh số -1; -2; -3. Em hãy dùng phép cộng các số nguyên để diễn tả hai tình huống sau đây:
a) Một thang máy đang ở tầng – 3, nó đi lên 5 tầng. Hỏi thang máy dừng lại ở tầng mấy?
b) Một thang máy đang ở tầng 3, nó đi xuống 5 tầng. Hỏi thang máy dừng lại ở tầng mấy?
(Ở một số tòa nhà, tầng mặt đất còn được gọi là tầng G).
Lời giải:
a) Ta có (-3) + 5 = 5 – 3 = 2.
Thang máy dừng ở tầng 2.
b) Ta có: 3 + (- 5) = – ( 5 – 3) = – 2.
Thang máy dừng ở tầng hầm -2.
Hoạt động khám phá 4 trang 60 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Tính và so sánh các cặp kết quả sau:
(-1) + (-3) và (-3) + (-1)
(-7) + (+6) và (+6) + (- 7)
Lời giải:
+) Ta có: (-1) + (-3) = – (1 + 3) = -4;
(-3) + (-1) = – (3 + 1) = -4;
Suy ra (-1) + (-3) = (-3) + (-1) = -4.
Vậy (-1) + (-3) = (-3) + (-1) .
+) Ta có: (-7) + (+6) = – ( 7 – 6) = -1;
(+6) + (- 7) = – ( 7 – 6 ) = -1;
Suy ra (-7) + (+6) = (+6) + (- 7) = – 1.
Vậy (+6) + (- 7) = (-7) + (+6).
Hoạt động khám phá 5 trang 60 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Tính và so sánh kết quả:
[(-3) + 4] + 2; (-3) + (4 + 2);
[(-3) + 2] + 4.
Lời giải:
Ta có:
[(-3) + 4] + 2 = (4 – 3) + 2 = 1 + 2 = 3;
(-3) + (4 + 2) = (-3) + 6 = 6 – 3 = 3;
[(-3) + 2] + 4 = – (3 – 2) + 4 = (-1) + 4 = 4 – 1 = 3.
Suy ra [(-3) + 4] + 2 = (-3) + (4 + 2) = [(-3) + 2] + 4 = 3.
Vậy [(-3) + 4] + 2 = (-3) + (4 + 2) = [(-3) + 2] + 4.
Thực hành 3 trang 61 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Thực hiện các phép tính sau:
a) 23 + (-77) + (-23) + 77;
b) (-2 020) + 2 021 + 21 + (-22).
Lời giải:
a) 23 + (-77) + (-23) + 77
= [23 + (-23)] + [(-77) + 77] (tính chất giao hoán và kết hợp)
= 0 + 0
= 0.
b) (-2020) + 2021 + 21 + (-22)
= [(-2020) + (-22)] + ( 2021 + 21) (tính chất giao hoán và kết hợp)
= (-2042) + 2042
= 0.
Hoạt động khám phá 6 trang 61 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
a) Mũi khoan một giàn khoan trên biển đang ở độ cao 5m so với mực nước biển, chú công nhân điều khiển nó hạ xuống 10m. Vậy mũi khoan ở độ cao nào (so với mực nước biển) sau khi hạ?
b) So sánh kết quả của hai phép tính sau:
5 – 2 và 5 + (-2).
Lời giải:
a) Mũi khoan đang ở độ cao: 5 – 10 = -5 (m) so với mực nước biển.
b) Ta có: 5 – 2 = 3 và 5 + (-2) = 5 – 2 = 3
Do đó: 5 – 2 = 5 + (-2)
Vậy 5 – 2 = 5 + (-2).
Thực hành 4 trang 62 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Thực hiện các phép tính sau:
a) 6 – 9; b) 23 – (-12); c) (-35) – (-60);
d) (-47) – 53; e) (-43) – (-43).
Lời giải:
a) 6 – 9 = 6 + ( -9) = -3;
b) 23 – (-12) = 23 + 12 = 35;
c) (-35) – (-60) = (-35) + 60 = 25;
d) (-47) – 53 = (-47) + (-53) = – 100;
e) (-43) – (-43) = (-43) + (43) = 0.
Hoạt động khám phá 7 trang 62 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Tính rồi so sánh các cặp kết quả sau:
a) – (4 + 7) và (-4 – 7);
b) – (12 – 25) và (-12 + 25);
c) – (- 8 + 7) và ( 8 – 7);
d) + ( -15 – 4) và ( – 15 – 4);
e) + (23 – 12) và (23 – 12).
Lời giải:
a) – (4 + 7) = – 11;
(-4 – 7) = (-4) + (-7) = -11;
Vậy – (4 + 7) = ( -4 – 7).
b) – (12 – 25) = – [12 + (-25)] = – (-13) =13;
(-12 + 25) = 25 – 12 = 13;
Vậy – (12 – 25) = ( -12 + 25).
c) – (- 8 + 7) = – (-1) = 1;
(8 – 7) = 1;
Vậy – (-8 +7) = (8 – 7).
d) + ( -15 – 4) = (-15) + (-4) = -19;
( – 15 – 4) = (-15) + (-4) = -19;
Vậy + ( -15 – 4) = ( – 15 – 4).
e) + (23 – 12) = + 11 = 11;
(23 – 12) = 11;
Vậy + (23 – 12) = 23 -12.
Thực hành 5 trang 63 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Tính T = – 9 + (-2) – (-3) + (-8).
Lời giải:
T = – 9 + (-2) – (-3) + (-8)
= [-9 – (-3)] + [(-2) + (-8)]
= [ – 9 + 3] + (- 10)
= -6 + (-10)
= -16.
Bài 1 trang 63 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Không thực hiện phép tính, tìm dấu thích hợp cho dấu ? ở bảng sau:
Lời giải:
+) Với a = 25, b = 46 ta nhận thấy cả a và b đều là số nguyên dương nên dấu của (a + b) là dương.
+) Với a = – 51, b = -37 ta nhận thấy cả a và b đều là số nguyên âm nên dấu của (a + b) là âm.
+) Với a = – 234, b = 112 ta thấy a là số nguyên âm, b là số nguyên dương và 234 > 112 nên dấu của (a + b) là âm.
+) Với a = 2027, b = – 2021 ta thấy a là số nguyên dương, b là số nguyên âm và a > b nên dấu của (a + b) là dương.
Ta hoàn thành bảng sau:
Bài 2 trang 63 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Thực hiện các phép tính sau:
a) 23 + 45; b) (-42) + (-54); c) 2 025 + (-2 025);
d) 15 + (-14); e) 35 + (-135).
Lời giải:
a) 23 + 45 = 68
b) (-42) + (-54) = – (42 + 54) = – 96;
c) 2 025 + (-2 025) = 0;
d) 15 + (-14) = (15 – 14) = 1;
e) 35 + (-135) = – (135 – 35) = – 100.
Bài 3 trang 63 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Em hãy dùng số nguyên âm để giải bài toán sau:
Một chiếc tàu ngầm đang ở độ sâu 20 m, tàu tiếp tục lặn thêm 15 m. Hỏi khi đó tàu ngầm ở độ sâu là bao nhiêu mét?
Lời giải:
Tàu ngầm đang ở độ sâu 20 m hay tàu đang ở độ cao: – 20 m;
Tàu lặn thêm 15 m nữa được biểu diễn bởi: – 15m;
Khi đó tàu ngầm ở : (- 20) + (-15) = – 35 (m)
Do đó tàu ngầm ở độ cao – 35 m hay tàu ở độ sâu 35 m.
Vậy độ sâu của tàu ngầm ở độ sâu 35 m.
Bài 4 trang 64 Toán lớp 6 Tập 1 – Chân trời sáng tạo: Một toà nhà có 12 tầng và 3 tầng hầm (tầng G được đánh số là tầng 0), hãy dùng phép cộng các số nguyên để diễn tả tình huống sau đây: Một thang máy đang ở tầng 3, nó đi lên 7 tầng và sau đó đi xuống 12 tầng. Hỏi cuối cùng thang máy dừng lại tại tầng mấy?
Lời giải:
Thang máy đang ở tầng 3 đi lên 7 tầng và sau đó đi xuống 12 tầng sẽ đến: 3 + 7 – 12 = 10 – 12 = -2.
Nghĩa là lúc này thang máy đang ở tầng hầm thứ hai.
Bài 5 trang 64 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Thực hiện các phép tính sau:
a) 6 – 8; b) 3 – (-9); c) (-5) – 10;
d) 0 – 7; e) 4 – 0; g) (-2) – (-10).
Lời giải:
a) 6 – 8 = 6 + (-8) = -2;
b) 3 – (-9) = 3 + 9 = 12;
c) (-5) – 10 = – (10 + 5) = -15;
d) 0 – 7 = -7;
e) 4 – 0 = 4;
g) (-2) – (-10) = (-2) + 10 = 10 – 2 = 8.
Bài 6 trang 64 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Tính nhanh các tổng sau:
a) S = (45 – 3 756) + 3 756;
b) S = (-2 021) – (199 – 2 021).
Lời giải:
a) S = (45 – 3 756) + 3 756 = 45 – 3 756 + 3 756 = 45 + [(– 3 756) + 3 756] = 45 + 0 = 45
b) S = (-2 021) – (199 – 2 021) = (-2 021) + (-199) + 2 021
= [(-2 021) + 2 021] + (- 199) = 0 + (- 199) = – 199
Bài 7 trang 64 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Bỏ dấu ngoặc rồi tính:
a) (4 + 32 + 6) + (10 – 36 – 6);
b) (77 + 22 – 65) – (67 + 12 – 75);
c) – (-21 + 43 + 7) – (11 – 53 – 17).
Lời giải:
a) (4 + 32 + 6) + (10 – 36 – 6)
= 4 + 32 + 6 + 10 – 36 – 6
= 36 + 6 + 10 – 36 – 6
= (36 – 36) + ( 6 – 6) + 10
= 0 + 0 + 10
= 10.
b) (77 + 22 – 65) – (67 + 12 – 75)
= 77 + 22 – 65 – 67 – 12 + 75
= (77 – 67) + (22 – 12) + ( – 65 + 75)
= 10 + 10 + 10
= 30.
c) – (-21 + 43 + 7) – (11 – 53 – 17)
= 21 – 43 – 7 – 11 + 53 + 17
= (21 – 11) + ( -43 + 53) + (-7 + 17)
= 10 + 10 + 10
= 30.
Bài 8 trang 64 Toán lớp 6 Tập 1 – Chân trời sáng tạo:
Archimedes (Ác-si-mét) là nhà bác học người Hi Lạp, ông sinh năm 287 TCN và mất năm 212 TCN.
a) Em hãy dùng số nguyên âm để ghi năm sinh năm mất của Archimedes.
b) Em hãy cho biết Archimedes mất năm bao nhiêu tuổi?
Lời giải:
a)
Archimedes sinh năm 287 TCN hay năm sinh của Archimedes là năm – 287
Ông mất năm 212 TCN hay năm mất của Archimedes: – 212
b) Ta tính tuổi của Archimedes bằng cách lấy năm mất trừ đi năm sinh.
Tuổi của nhà bác học là: (-212) – (-287) = (-212) + 287 = 75 (tuổi)
Vậy Archimedes mất năm 75 tuổi.