Chương 7: Bất phương trình bậc hai một ẩn

Xem toàn bộ tài liệu Lớp 10 – Chân Trời Sáng Tạo: tại đây

Hoạt động khởi động trang 6 Toán lớp 10 Tập 2:

Lời giải:

Sau bài học này chúng ta sẽ giải bài toán trên như sau:

Quan sát hình vẽ ta thấy mặt cầu là trục Ox, phần h(x) nằm phía trên mặt cầu nghĩa là h(x) nằm phía trên trục hoành hay là h(x) > 0.

Phần h(x) nằm phía dưới mặt cầu nghĩa là h(x) nằm phía dưới trục hoành hay là h(x) < 0.

Vậy với giá trị của h(x) > 0 thì vòm cầu cao hơn mặt cầu, với giá trị của h(x) < 0 thì vòm cầu thấp hơn mặt cầu.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Hoạt động khám phá 1 trang 6 Toán lớp 10 Tập 2:

a) Biểu thức f(x) là đa thức bậc mấy?

b) Xác định dấu của f(2).

Lời giải:

a) Biểu thức f(x) là đa thức bậc 2.

b) Dựa vào đồ thị ta thấy với x = 2 thì f(2) = 1 > 0.

Vậy f(2) mang dấu dương.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Thực hành 1 trang 7 Toán lớp 10 Tập 2:

a) f(x) = 2x2 + x – 1;

b) g(x) = – x4 + 2x2 + 1;

c) h(x) = – x2 +



2


x – 3.

Lời giải:

a) Biểu thức f (x) = 2x2 + x – 1 có dạng tam thức bậc hai với a = 2, b = 1 và c = -1.

Với x = 1 thì f (1) = 2.12 + 1 – 1 = 2 > 0.

b) Biểu thức g(x) = – x4 + 2x2 + 1 không có dạng tam thức bậc hai vì bậc của đa thức là bậc 4.

c) Biểu thức h(x) = – x2 +



2


x – 3 có dạng tam thức bậc hai với a = -1, b =



2


, c = -3.

Với x = 1 thì h(1) = – 12 +



2


.1 – 3 = – 4 < 0.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Thực hành 2 trang 7 Toán lớp 10 Tập 2:

a) f(x) = 2x2 – 5x + 2;

b) g(x) = – x2 + 6x – 9;

c) h(x) = 4x2 – 4x + 9.

Lời giải:

a) Tam thức bậc hai f(x) = 2x2 – 5x + 2 có ∆ = (-5)2 – 4.2.2 = 25 – 16 = 9 > 0. Do đó f(x) có hai nghiệm phân biệt là:

x1=












5




+



9




2.2


= 2 và x2=












5








9




2.2


=


1


2


.

Vậy biệt thức ∆ = 9 và tam thức có hai nghiệm phân biệt x1 = 2 và x2=



1


2


.

b) Tam thức bậc hai g(x) = – x2 + 6x – 9 có ∆ = 62 – 4.(-1).(-9) = 36 – 36 = 0. Do đó g(x) có nghiệm kép là:

x1= x2 =







6


+



0





2.







1





=

3

.

Vậy biệt thức ∆ = 0 và tam thức có hai nghiệm kép x = 3.

c) Tam thức bậc hai h(x) = 4x2 – 4x + 9 có ∆ = 42 – 4.4.9 = 16 – 144 = – 128 < 0. Do đó f(x) vô nghiệm.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Hoạt động khám phá 2 trang 8 Toán lớp 10 Tập 2:

– Các nghiệm (nếu có) và dấu của biệt thức ∆.

– Các khoảng giá trị của x mà trên đó f(x) cùng dấu với hệ số của x2.

Lời giải:

a) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = – x2 + 2x – 2 vô nghiệm.

Ta có ∆ = 22 – 4(-1).(-2) = 4 – 8 = – 4 < 0.

Tam thức f(x) có hệ số a = -1 < 0.

Ta thấy toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với mọi x.

Suy ra f(x) cùng dấu với hệ số a với mọi x.

b) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = 1 nên tam thức f(x) = – x2 + 2x – 1 có một nghiệm duy nhất x = 1.

Ta có ∆ = 22 – 4(-1).(-1) = 4 – 4 = 0.

Tam thức f(x) có hệ số a = -1 < 0.

Ta thấy với x ≠ 1 toàn bộ đồ thị hàm số nằm phía dưới trục hoành nên f(x) < 0 với x ≠ 1 và f(x) = 0 với x = 1.

Suy ra f(x) cùng dấu với hệ số a với x ≠ 1.

c) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = – 1 và x2 = 3 nên tam thức f(x) = – x2 + 2x + 3 có hai nghiệm phân biệt x1 = – 1 và x2 = 3.

Ta có ∆ = 22 – 4.3.(-1) = 4 + 12 = 16 > 0.

Tam thức f(x) có hệ số a = -1 < 0.

Ta thấy với x < – 1 hoặc x > 3 thì đồ thị hàm số nằm phía dưới trục hoành, với -1 < x < 3 thì đồ thị hàm số nằm phía trên trục hoành hay f(x) < 0 với x < -1 hoặc x > 3; f(x) > 0 với -1 < x < 3 và f(x) = 0 tại x = -1 hoặc x = 3.

Suy ra f(x) cùng dấu với hệ số a với x < -1 hoặc x > 3.

d) Dựa vào hình vẽ ta thấy đồ thị hàm số không cắt trục hoành nên tam thức f(x) = x2 + 6x + 10 vô nghiệm.

Ta có ∆ = 62 – 4.1.10 = 36 – 40 = – 4 < 0.

Tam thức f(x) có hệ số a = 1 > 0.

Ta thấy toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với mọi x.

Suy ra f(x) cùng dấu với hệ số a với mọi x.

e) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại một điểm duy nhất có hoành độ x = -3 nên tam thức f(x) = x2 + 6x + 9 có một nghiệm duy nhất x = -3.

Ta có ∆ = 62 – 4.1.9 = 36 – 36 = 0.

Tam thức f(x) có hệ số a = 1 > 0.

Ta thấy với x ≠ -3 toàn bộ đồ thị hàm số nằm phía trên trục hoành nên f(x) > 0 với x ≠ – 3 và f(x) = 0 với x = -3.

Suy ra f(x) cùng dấu với hệ số a với x ≠ -3.

g) Dựa vào hình vẽ ta thấy đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = -4 và x2 = -2 nên tam thức f(x) = x2 + 6x + 8 có hai nghiệm phân biệt x1 = -4 và x2 = -2.

Ta có ∆ = 62 – 4.1.8 = 36 – 32 = 4 > 0.

Tam thức f(x) có hệ số a = 1 > 0.

Ta thấy với x < – 4 hoặc x > -2 thì đồ thị hàm số nằm phía trên trục hoành, với -4 < x < -2 thì đồ thị hàm số nằm phía dưới trục hoành hay f(x) > 0 với x < -4 hoặc x > 2; f(x) < 0 với -4 < x < -2 và f(x) = 0 tại x = -4 hoặc x = -2.

Suy ra f(x) cùng dấu với hệ số a với x < -4 hoặc x > -2.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Thực hành 3 trang 9 Toán lớp 10 Tập 2:

a) f(x) = 2x2 – 3x – 2;

b) g(x) = – x2 + 2x – 3.

Lời giải:

a) Tam thức f(x) = 2x2 – 3x – 2 có ∆ = (-3)2 – 4.2.(-2) = 9 + 16 = 25 > 0. Do đó f(x) có hai nghiệm phân biệt x1 =





1


2


và x2 = 2 và a = 2 > 0.

Ta có bảng xét dấu sau:

Dựa vào bảng xét dấu ta thấy f(x) âm trong khoảng








1


2



;


2



và dương trong hai khoảng










;






1


2




và (2; +∞).

Vậy với x ∈








1


2



;


2



thì f(x) < 0 và x ∈










;






1


2




hoặc x ∈ (2; +∞) thì f(x) > 0.

b) Tam thức g(x) = – x2 + 2x – 3 có ∆ = 22 – 4.(-1).(-3) = 4 – 12 = – 8 < 0. Do đó g(x) vô nghiệm và a = -1 < 0.

Ta có bảng xét dấu sau:

Dựa vào bảng xét dấu ta thấy g(x) âm với mọi giá trị thực của x.

Vậy g(x) < 0 với mọi x ∈ ℝ.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Vận dụng trang 9 Toán lớp 10 Tập 2:

Lời giải:

Ta có h(x) = -0,006x2 + 1,2x – 30 là tam thức bậc hai. h(x) có ∆ = 1,22 – 4.(-0,006).(-30) = 0,72 > 0. Do đó tam thức có hai nghiệm phân biệt là x1 ≈ 170,7 và x2 ≈ 29,3 và a = – 0,006 < 0.

Ta có bảng xét dấu f(x) như sau:

Từ bảng xét dấu ta thấy f(x) dương trong khoảng (29,3; 170,7) và âm trong hai khoảng (-∞; 29,3) và (170,7; +∞).

Kết hợp với điều kiện 0 ≤ x ≤ 200 thì f(x) dương khi x ∈ (29,3; 170,7) và f(x) âm khi x ∈ [0; 29,3) và (170,7; 200].

Vậy với giá trị của x ∈ (29,3; 170,7) thì vòm cầu cao hơn mặt cầu, với giá trị của x nằm trong hai khoảng (-∞; 29,3) và (170,7; +∞) thì vòm cầu thấp hơn mặt cầu.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 1 trang 9 Toán lớp 10 Tập 2: Đa thức nào sau đây là tam thức bậc hai?

a) 4x2 + 3x + 1;

b) x3 + 3x2 – 1;

c) 2x2 + 4x – 1.

Lời giải:

a) 4x2 + 3x + 1 là tam thức bậc hai với a = 4, b = 3 và c = 1.

b) x3 + 3x2 – 1 không là tam thức bậc hai vì bậc của đa thức là 3.

c) 2x2 + 4x – 1 là tam thức bậc hai với a = 2, b = 4 và c = -1.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 2 trang 9 Toán lớp 10 Tập 2: Xác định giá trị của m để đa thức sau là tam thức bậc hai.

a) (m + 1)x2 + 2x + m;

b) mx3 + 2x2 – x + m;

c) – 5x2 + 2x – m + 1.

Lời giải:

a) Để đa thức (m + 1)x2 + 2x + m là tam thức bậc hai thì hệ số của x2 phải khác 0.

Suy ra m + 1 ≠ 0 ⇔ m ≠ – 1.

Vậy với m ≠ – 1 thì đa thức (m + 1)x2 + 2x + m là tam thức bậc hai.

b) Để đa thức mx3 + 2x2 – x + m là tam thức bậc hai thì bậc cao nhất của đa thức là 2 do đó hệ số của x3 phải bằng 0 hay m = 0.

Vậy với m = 0 thì đa thức mx3 + 2x2 – x + m là tam thức bậc hai.

c) Để đa thức – 5x2 + 2x – m + 1 thỏa mãn là tam thức bậc hai với mọi m.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 3 trang 10 Toán lớp 10 Tập 2: Dựa vào đồ thị của các hàm số bậc hai sau đây, hãy lập bảng xét dấu của tam thức bậc hai tương ứng.

Lời giải:

a) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = – 2 và x2 =



1


2


. Do đó f(x) có hai nghiệm phân biệt x1 = – 2, x2 =



1


2


và a = 1 > 0.

Với x thuộc khoảng (-∞; -2) và





1


2



;


+






thì đồ thị hàm số nằm phía trên trục hoành hay f(x) > 0 khi x thuộc khoảng (-∞; -2) và





1


2



;


+






.

Với x thuộc khoảng







2


;



1


2




thì đồ thị hàm số nằm dưới trục hoành hay f(x) < 0 khi x ∈







2


;



1


2




.

Ta có bảng xét dấu f(x) như sau:

b) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số không cắt trục hoành. Do đó g(x) vô nghiệm và a = 1 > 0.

Hơn nữa toàn bộ đồ thị hàm số g(x) nằm phía trên trục hoành với mọi giá trị của x nên g(x) > 0 với mọi x.

Ta có bảng xét dấu f(x) như sau:

c) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số h(x) cắt trục hoành tại một điểm duy nhất có hoành độ x =





2


3


. Do đó h(x) có nghiệm duy nhất x =





2


3


và a = – 9 < 0.

Với x =





2


3


thì h(x) = 0;

Với x ≠





2


3


thì đồ thị hàm số h(x) nằm hoàn toàn dưới trục hoành nên h(x) < 0 với x ≠





2


3


.

Khi đó ta có bảng xét dấu:

d) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số không cắt trục hoành. Do đó f(x) vô nghiệm và a = -0,5 < 0.

Hơn nữa toàn bộ đồ thị hàm số f(x) nằm phía dưới trục hoành với mọi giá trị của x nên f(x) < 0 với mọi x.

Ta có bảng xét dấu f(x) như sau:

e) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số cắt trục hoành tại hai điểm phân biệt có hoành độ lần lượt là x1 = – 2 và x2 =



3


2


. Do đó g(x) có hai nghiệm phân biệt x1 = – 2, x2 =



3


2


và a = -1 < 0.

Với x thuộc khoảng (-∞; -2) và





3


2



;


+






thì đồ thị hàm số nằm phía dưới trục hoành hay g(x) < 0 khi x thuộc khoảng (-∞; -2) và





3


2



;


+






.

Với x thuộc khoảng







2


;



3


2




thì đồ thị hàm số nằm trên trục hoành hay g(x) > 0 khi x ∈







2


;



3


2




.

Ta có bảng xét dấu g(x) như sau:

g) Dựa vào hình vẽ ta thấy:

Đồ thị hàm số h(x) cắt trục hoành tại một điểm duy nhất có hoành độ x =





2


. Do đó h(x) có nghiệm duy nhất x =





2


và a = 1 > 0.

Với x =





2


thì h(x) = 0;

Với x ≠





2


thì đồ thị hàm số h(x) nằm hoàn toàn phía trên trục hoành nên h(x) > 0 với x ≠





2


3


.

Khi đó ta có bảng xét dấu:

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 4 trang 10 Toán lớp 10 Tập 2: Xét dấu của tam thức bậc hai sau đây:

a) f(x) = 2x2 + 4x + 2;

b) f(x) = – 3x2 + 2x + 21;

c) f(x) = – 2x2 + x – 2;

d) f(x) = -4x(x + 3) – 9;

e) f(x) = (2x + 5)(x – 3).

Lời giải:

a) Tam thức bậc hai f(x) = 2x2 + 4x + 2 có ∆ = 42 – 4.2.2 = 16 – 16 = 0. Do đó f(x) có một nghiệm kép x1 = x2 = – 1 và a = 2 > 0.

Ta có bảng xét dấu sau:

Vậy f(x) = 2x2 + 4x + 2 mang dấu dương khi x ≠ – 1.

b) Tam thức bậc hai f(x) = – 3x2 + 2x + 21 có ∆ = 22 – 4.(-3).21 = 256 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 =





7


3


và a = -3 < 0.

Ta có bảng xét dấu:

Vậy f(x) = – 3x2 + 2x + 21 dương khi x thuộc khoảng








7


3



;


3



và f(x) = – 3x2 + 2x + 21 âm khi x thuộc hai khoảng










;






7


3







3


;


+






.

c) Tam thức bậc hai f(x) = – 2x2 + x – 2 có ∆ = 12 – 4.(-2).(-2) = 1 – 16 = -15 < 0. Do đó hàm số vô nghiệm và a = -2 < 0.

Ta có bảng xét dấu:

Vậy f(x) = – 2x2 + x – 2 âm với mọi giá trị thực của x.

d) Ta có f(x) = -4x(x + 3) – 9 = – 4x2 – 12x – 9.

Xét tam thức f(x) = – 4x2 – 12x – 9 có ∆ = (-12)2 – 4.(-4)(-9) = 144 – 144 = 0. Do đó f(x) có nghiệm kép x1 = x2 =





3


2


và a = – 4 < 0.

Ta có bảng xét dấu:

Vậy f(x) mang dấu âm khi x ≠





3


2


.

e) Ta có f(x) = (2x + 5)(x – 3) = 2x2 – 6x + 5x – 15 = 2x2 – x – 15.

Tam thức f(x) = 2x2 – x – 15 có ∆ = (-1)2 – 4.2.(-15) = 1 + 120 = 121 > 0. Do đó f(x) có hai nghiệm phân biệt x1 = 3 và x2 =





5


2


và a = 2 > 0.

Ta có bảng xét dấu:

Vậy f(x) = (2x + 5)(x – 3) âm khi x thuộc khoảng








5


2



;


3



và f(x) = (2x + 5)(x – 3) dương khi x thuộc hai khoảng










;






5


2




và (3; +∞).

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 5 trang 10 Toán lớp 10 Tập 2: Độ cao (tính bằng mét) của một quả bóng so với vành rổ khi bóng di chuyển được x mét theo phương ngang được mô phỏng bằng hàm số h(x) = – 0,1x2 + x – 1. Trong các khoảng nào của x thì bóng nằm: cao hơn vành rổ, thấp hơn vành rổ và ngang vành rổ? Làm tròn kết quả đến hàng phần mười.

Lời giải:

Ta có h(x) = -0,1x2 + x – 1 là tam thức bậc hai với a = -0,1, b = 1 và c = -1.

Tam thức bậc hai h(x) = -0,1x2 + x – 1 có ∆ = 12 – 4.(-0,1).(-1) = 0,6 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 5 +



15


, x2 = 5 –



15


và a = -0,1 < 0.

Ta có bảng xét dấu sau:

Suy ra h(x) dương khi x thuộc khoảng




5






5



;


5


+



5




và h(x) âm khi x thuộc hai khoảng










;


5






5







5


+



5



;


+






.

Dựa vào hình vẽ ta thấy trục Ox chính là vành rổ.

Ta có


5




5




1

,

1


5

+


5




8

,

9

Vậy với x thuộc khoảng (1,1; 8,9) thì bóng nằm cao hơn vành rổ và với x thuộc khoảng (– ∞;1,1) và (8,9 ; + ∞) thì bóng nằm thấp hơn vành rổ.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 6 trang 10 Toán lớp 10 Tập 2: Một khung dây thép hình chữ nhật có chiều dài 20 cm và chiều rộng 15 cm được uốn lại thành khung hình chữ nhật mới có kích thước (20 + x) cm và (15 – x) cm. Với x nằm trong các khoảng nào thì diện tích của khung sau khi uốn: tăng lên, không thay đổi, giảm đi?

Lời giải:

Diện tích khung dây thép hình chữ nhật ban đầu là: 20.15 = 300 (cm2).

Diện tích khung hình chữ nhật mới là: (20 + x)(15 – x) = 300 + 5x – x2 (cm2).

Xét hiệu f(x) = 300 – 300 – 5x + x2 = x2 – 5x.

Ta có f(x) = x2 – 35x là tam thức bậc hai có ∆ = (-35)2 – 4.1.0 = 1 225 > 0. Do đó h(x) có hai nghiệm phân biệt x1 = 0, x2 = -5 và a = 1 > 0.

Khi đó ta có bảng xét dấu:

Suy ra f(x) âm khi x thuộc khoảng (-5; 0), f(x) dương khi x thuộc hai khoảng (-∞; -5) và (0; +∞).

Vậy với x thuộc khoảng (-5; 0) thì diện tích của khung dây thép tăng lên, x thuộc hai khoảng (-∞; -5) và (0; +∞) thì diện tích của khung dây thép giảm đi, và x = – 5 hoặc x = 0 thì diện tích khung dây thép không đổi.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 7 trang 10 Toán lớp 10 Tập 2: Chứng minh rằng với mọi số thực m ta luôn có 9m2 + 2m > – 3.

Lời giải:

Ta có: 9m2 + 2m > – 3

⇔ 9m2 + 2m + 3 > 0

Đặt f(m) = 9m2 + 2m + 3

Ta thấy f(m) là tam thức bậc hai với a = 9, b = 2 và c = 3.

Ta có: ∆ = 22 – 4.9.3 = 4 – 108 = -104 < 0. Do đó f(m) vô nghiệm và a = 9 > 0.

Khi đó ta có bảng xét dấu:

Từ bảng xét dấu ta thấy f(m) > 0 với mọi m

⇒ 9m2 + 2m + 3 > 0 với mọi m hay 9m2 + 2m > – 3 với mọi m.

Vậy 9m2 + 2m > – 3 với mọi m.

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

Bài 8 trang 10 Toán lớp 10 Tập 2: Tìm giá trị của m để:

a) 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ;

b) mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ.

Lời giải:

a) Xét f(x) = 2x2 + 3x + m + 1 là tam thức bậc hai với a = 2, b = 3, c = m + 1.

Ta có: ∆ = 32 – 4.2.(m + 1) = 9 – 8m – 8 = 1 – 8m.

Vì a = 2 > 0 nên để 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ thì ∆ < 0

⇔ 1 – 8m < 0

⇔ m >



1


8


.

Vậy với m >



1


8


thì 2x2 + 3x + m + 1 > 0 với mọi x ∈ ℝ.

b) Xét g(x) = mx2 + 5x – 3

+) Với m = 0 thì g(x) = 5x – 3

Ta có: 5x – 3 ≤ 0 ⇔ x ≤



3


5


.

Do đó với m = 0 không thỏa mãn.

+) Với m ≠ 0 thì g(x) = mx2 + 5x – 3 là tam thức bậc hai với a = m, b = 5, c = – 3.

Ta có ∆ = 52 – 4.m.(-3) = 25 + 12m.

Để mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ thì


m






25


12


thì mx2 + 5x – 3 ≤ 0 với mọi x ∈ ℝ .

Lời giải bài tập Toán 10 Bài 1: Dấu của tam thức bậc hai hay, chi tiết khác:

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1178

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống