Xem toàn bộ tài liệu Lớp 7: tại đây
- Giải Toán Lớp 7
- Sách Giáo Khoa Toán lớp 7 tập 1
- Sách Giáo Khoa Toán lớp 7 tập 2
- Sách Giáo Viên Toán Lớp 7 Tập 1
- Sách Giáo Viên Toán Lớp 7 Tập 2
- Vở Bài Tập Toán Lớp 7 Tập 1
- Vở Bài Tập Toán Lớp 7 Tập 2
Sách Giải Sách Bài Tập Toán 7 Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 11 trang 38 sách bài tập Toán 7 Tập 2: Cho hình sau. So sánh các độ dài AB, AC, AD, AE.
Lời giải:
Vì điểm C nằm giữa B và D nên BC < BD (1)
Vì điểm D nằm giữa B và E nên BD < BE (2)
Từ (1) và (2) suy ra: BC < BD < BE
Vì B, C, D, E thẳng hành và AB ⊥ BE nên:
AB < AC < AD < AE
(đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn)
Bài 12 trang 38 sách bài tập Toán 7 Tập 2: Cho hình bên. Chứng minh rằng MN < BC.
Lời giải:
Nối BN.
Vì M nằm giữa A và B nên AM < AB
Ta có: NA ⊥ AB
Suy ra: NM < NB (đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn) (1)
Vì N nằm giữa A và C nên AN < AC
Lại có: BA ⊥ AC
Suy ra: BN < BC (đường xiên nào có hình chiếu nhỏ hơn thì nhỏ hơn) (2)
Từ (1) và (2) suy ra: MN < BC
Bài 13 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC cân tại A có AB = AC = 10cm, BC = 12cm. Vẽ cung tròn tâm A có bán kính 9cm. Cung đó có cắt đường thẳng BC hay không, có cắt cạnh BC hay không? Vì sao?
Lời giải:
Kẻ AH ⊥ AB.
Xét hai tam giác vuông AHB và AHC, ta có:
∠AHB = ∠AHC = 90o
AB = AC (gt)
AH cạnh chung
Suy ra: ΔAHB = ΔAHC
(cạnh huyền – cạnh góc vuông)
Suy ra: HB = HC (hai cạnh tương ứng)
Ta có: HB = HC = BC2 = 6 (cm)
Trong tam giác vuông AHB có ∠AHB = 90o
Áp dụng định lí Pi-ta-go, ta có:
AB2 = AH2 + HB2 ⇒ AH2 = AB2 – HB2 = 102 – 62 = 64
⇒ AH = 8 (cm)
Do bán kính cung tròn 9(cm) > 8(cm) nên cung tròn tâm A bán kính 9 cm cắt đường thẳng BC.
Gọi D là giao điểm của cung tròn tâm A bán kính 9 cm với BC.
Vì đường xiên AD < AC nên hình chiếu HD < HC.
Do đó D nằm giữa H và C.
Vậy cung tròn tâm A bán kính 9 cm cắt cạnh BC.
Bài 14 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC, điểm D nằm giữa A và C (BD không vuông góc với AC). Gọi E và F là chân đường vuông góc kẻ từ A và C đến đường thẳng BD. So sánh AC với tổng AE + CF.
Lời giải:
Trong ∆ADE, ta có ∠(AED) = 90o
Suy ra: AE < AD (1)
Trong ∆CFD, ta có ∠(CFD) = 90o
Suy ra: CF < CD (2)
Cộng từng vế (1) và (2), ta có:
AE + DF < AD + CD
Vì D nằm giữa A và C nên AD + CD = AC
Vậy AE + CF < AC.
Bài 15 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh rằng AB < (BE + BF) / 2 .
Lời giải:
Trong ΔABM, ta có ∠(BAM) = 90o
Suy ra: AB < BM
Mà BM = BE + EM = BF – MF
Suy ra: AB < BE + EM
AB < BF – FM
Suy ra:AB + AB < BE + ME + BF – MF (1)
Xét hai tam giác vuông AEM và CFM, ta có:
∠(AEM) = ∠(CFM) = 90o
AM = CM (gt)
∠(AME) = ∠(CMF) (đối đỉnh)
Suy ra: ΔAEM = ΔCFM (cạnh huyền – góc nhọn)
Suy ra: ME = MF (2)
Từ (1) và (2) suy ra: AB + AB < BE + BF
Suy ra: 2AB < BE + BF
Vậy AB < (BE + BF) / 2 .
Bài 16 trang 38 sách bài tập Toán 7 Tập 2: Cho tam giác ABC cân tại A, điểm D nằm giữa B và C. Chứng minh rằng độ dài AD nhỏ hơn cạnh bên của tam giác ABC.
Lời giải:
Kẻ AH ⊥ BC.
* Trường hợp H trùng với D
Ta có AH < AC (đường vuông góc ngắn hơn đường xiên)
Suy ra: AD < AC
* Trường hợp H không trùng với D
Giả sử D nằm giữa H và C.
Ta có: HD < HC
Suy ra: AD < AC (hình chiếu nhỏ hơn thì có đường xiên nhỏ hơn)
Vậy AD nhỏ hơn cạnh bên của tam giác cân ABC.
Bài 17 trang 38 sách bài tập Toán 7 Tập 2: Cho hình sau trong đó AB > AC. Chứng minh rằng EB > EC.
Lời giải:
Ta có: AB > AC (gt)
Suy ra: HB > HC (đường xiên lớn hơn có hình chiếu lớn hơn)
Suy ra: EB > EC (hình chiếu lớn hơn thì có đường xiên lớn hơn)
Bài 18 trang 39 sách bài tập Toán 7 Tập 2: Cho hình sau, chứng minh rằng: BD + CE < AB + AC
Lời giải:
Trong ΔABD, ta có ∠(ADB) = 90o
Suy ra: BD < AB (đường vuông góc ngắn hơn đường xiên) (1)
Trong ΔAEC, ta có ∠(AEC) = 90o
Suy ra: CE < AC (cạnh huyền lớn hơn cạnh góc vuông) (2)
Cộng từng vế (1) và (2), ta có: BD + CE < AB + AC.
Bài 2.1 trang 39 sách bài tập Toán 7 Tập 2: Cho đường thẳng d và điểm A không thuộc d. Trong các khẳng định sau đây, khẳng định nào đúng, khẳng định nào sai?
(A) Có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d.
(B) Có duy nhất một đường kẻ xiên kẻ từ điểm A đến đường thẳng d.
(C) Có vô số đường vuông góc kẻ từ điểm A đến đường thẳng d.
(D) Có vô số đường kẻ xiên kẻ từ điểm A đến đường thẳng d.
Hãy vẽ hình minh họa cho các khẳng định đúng.
Lời giải:
Ta biết rằng có duy nhất một đường thẳng đi qua một điểm cho trước, vuông góc với một đường thẳng cho trước và có vô số đường thẳng đi qua một điểm cho trước cắt một đường cho trước. Bởi vì, có duy nhất một đường vuông góc kẻ từ điểm A đến đường thẳng d và có vô số đường xiên kẻ từ điểm A đến đường thẳng d.
(A) Đúng
(B) Sai
(C) Sai
(D) Đúng
Trong hình AH là đường vuông góc duy nhất và AB, AC, AD, AE, AG là những đường xiên kẻ từ A đến d (có thể kẻ được vô số đường xiên như thế)
Bài 2.2 trang 39 sách bài tập Toán 7 Tập 2: Qua điểm A không thuộc đường thẳng d, kẻ đường vuông góc AH và các đường xiên AB, AC đến đường thẳng d (H, B, C đều thuộc d). Biết rằng HB < HC. Hãy chọn khẳng định đúng trong các khẳng định sau:
(A) AB < AC
(B) AB = AC
(C) AB < AC
(D) AH < AB
Lời giải:
Theo định lý so sánh giữa hình chiếu và hình xiên ta có:
HB < HC ⇒ AB < AC. Chọn (C)
Bài 2.3 trang 39 sách bài tập Toán 7 Tập 2: a) Hai tam giác ABC, A’B’C’ vuông tại A và A’ có AB = A’B’, AC > A’C’. Không sử dụng định lý Pitago, chứng minh rằng BC > B’C’.
b) Hai tam giác ABC, A’B’C’ vuông tại A và A’ có AB = A’B’, BC > B’C’.
sử dụng định lý Pytago, chứng minh rằng AC > A’C’
Lời giải:
a) Do AC > A’C’ nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A’B’C’, suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B’C’.
b) Dùng phản chứng:
– Giả sử AC < A’C’. Khi đó theo chứng minh câu a) ta có BC < B’C’. Điều này không đúng với giả thiết BC > B’C’.
Giả sử AC = A’C’. Khi đó ta có ΔABC = ΔA’B’C’ (c.g.c). Suy ra BC = B’C’.
Điều này cũng không đúng với giả thiết BC > B’C’. Vậy ta phải có AC > A’C’.
(Nếu sử dụng định lý Pytago thì có thể giải bài toán sau)
Trong tam giác vuông ABC có BC 2= AB 2+ AC 2 (1)
Trong tam giác vuông A’B’C’ có B’C’ 2= A’B’ 2+ A’C’ 2 (2)
Theo giả thiết AB = A’B’ nên từ (1) và (2) ta có:
– Nếu AC > A’C’ thì AC 2 > A’C’ 2, suy ra BC 2 > B’C’ 2 hay BC > B’C’
– Nếu BC > B’C’ thì BC 2 > B’C’ 2, suy ra AC 2 > A’C’ 2 hay AC > A’C’.
Bài 2.4 trang 39 sách bài tập Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Gọi BD là đường phân giác của góc B (D ∈ AC). Chứng minh rằng BD > BC.
Lời giải:
Do BD là tia phân giác của góc ABC nên tia BD ở giữa hai tia BA và BC, suy ra D ở giữa A và C, hay AD < AC. Hai đường xiên BC, BD lần lượt có hình chiếu trên AC là AC và AD. Hơn nữa AD > AC, suy ra BD < BC. (Một cách tương tự, ta cũng chứng minh được đoạn thẳng nối B với trung điểm của đoạn thẳng AC nhỏ hơn BC)
Bài 2.5 trang 40 sách bài tập Toán 7 Tập 2: Cho điểm A nằm ngoài đường thẳng xy
a) Tìm trên đường thẳng xy hai điểm M, N sao cho hai đường xiên AM và AN bằng nhau.
b) Lấy một điểm D trên đường thẳng xy. Chứng minh rằng:
– Nếu D ở giữa M và N thì AD < AM ;
– Nếu D không thuộc đoạn thẳng MN thì AD > AM.
Lời giải:
a) Phân tích bài toán: Giả sử M và N là hai điểm của đường thẳng xy mà AM = AN. Nếu gọi H là chân đường vuông góc kẻ từ điểm A đến xy thì HM, HN lần lượt là hình chiếu của các đường xiên AM, AN.
Từ AM = AN suy ra HM = HN, từ đó xác định được hai điểm M, N.
Kẻ AH vuông góc với xy (H ∈ xy)
Lấy hai điểm M, N trên xy sao cho HM = HN (1)
(dùng compa vẽ một đường tròn tâm H bán kính tùy ý; đường tròn này cắt đường thẳng xy tại hai điểm M, N thỏa mãn HM = HN)
Hai đường xiên AM, AN lần lượt có hình chiếu là HM và HN, do đó từ (1) suy ra AM = AN
b) Xét trường hợp D ở giữa M và N
– Nếu D ≡ H thì AD = AH, suy ra AD > AM (đường vuông góc ngắn hơn đường xiên)
– Nếu D ở giữa M và H thì HD < HM, do đó AD < AM (đường xiên có hình chiếu ngắn hơn thì ngắn hơn)
– Nếu D ở giữa H và N thì HD < HN, do đó AD < AN.
Theo a) ta có AM = AN nên AD < AM
Vậy khi D ở giữa M và N thì ta luôn có AD < AM
Bài 2.6 trang 40 sách bài tập Toán 7 Tập 2: Cho điểm P nằm ngoài đường thẳng d.
a) Hãy nêu cách vẽ đường xiên PQ, PR sao cho PQ = PR và ∠(QPR) = 60o
b) Trong hình dựng được ở câu a), cho PQ = 18cm. Tính độ dài hình chiếu của hai đường xiên PQ, PR trên d.
Lời giải:
a) Phân tích bài toán
Giả sử PQ và PR là hai đường xiên kẻ từ P đến d sao cho PQ = PR và ∠(QPR) = 60o. Gọi H là chân đường vuông góc kẻ từ P đến d. Khi đó ∆PHQ = ∆PHQ (cạnh huyền, cạnh góc vuông), suy ra ∠(HPQ) = ∠(HPR) = 30o. Từ đó suy ra cách vẽ hai đường xiên PQ và PR.
Kẻ PH ⊥ d (H ∈ d). Dùng thước đo góc để vẽ góc HPx bằng 30o. Tia Px cắt d tại điểm Q. Trên d lấy điểm R sao cho HR = HQ. Hai đường xiên PQ và PR lần lượt có hình chiếu trên d là HQ và HR. Do HQ = HR nên PQ = PR.
Hơn nữa ∠(QPR) = 2∠(HPQ) = 60o.
b) Hướng dẫn
– Tam giác PQR có PQ = PR và ∠(QPR) = 60o, tam giác đó là tam giác gì?
– PQ = 18cm ⇒ QR =? ; HQ = HR =?