Xem toàn bộ tài liệu Lớp 7: tại đây
- Giải Toán Lớp 7
- Sách Giáo Khoa Toán lớp 7 tập 1
- Sách Giáo Khoa Toán lớp 7 tập 2
- Sách Giáo Viên Toán Lớp 7 Tập 1
- Sách Giáo Viên Toán Lớp 7 Tập 2
- Vở Bài Tập Toán Lớp 7 Tập 1
- Vở Bài Tập Toán Lớp 7 Tập 2
Sách Giải Sách Bài Tập Toán 7 Bài 8: Tính chất ba đường trung trực của tam giác giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 64 trang 49 sách bài tập Toán 7 Tập 2: Cho tam giác ABC. Tìm một điểm O cách đều ba điểm A, B, C.
Lời giải:
Vì điểm O cách đều hai điểm A và B nên O thuộc đường trung trực của AB.
Vì điểm O cách đều hai điểm A và C nên O thuộc đường trung trực của AC.
Vì điểm O cách đều hai điểm B và C nên O thuộc đường trung trực của BC.
Trong tam giác, ba đường trung trực đồng quy tại một điểm. Dựng đường trung trực AB và BC cắt nhau tại O.
Vậy O là điểm cần tìm.
Bài 65 trang 49 sách bài tập Toán 7 Tập 2: Cho hình dưới (hình 65a). Chứng minh rằng ba điểm B, K, C thẳng hàng
Lời giải:
Nối KA, KB, KC (hình 65b).
Vì KD là đường trung trực của AB nên:
KA = KB (tính chất đường trung trực)
Suy ra: ΔKAB cân tại K
Do đó KD là đường phân giác của ∠(AKB)
Suy ra: ∠K1 = ∠K3 ⇒ ∠(AKB) = 2 ∠K1 (1)
Vì KE là đường trung trực của AC nên:
KA = KC (tính chất đường trung trực)
Do đó KE là đường phân giác của ∠(AKC)
Suy ra: ∠K2 = ∠K4 ⇒ ∠(AKC) = 2 ∠K2 (2)
Ta có: KD ⊥ AB (gt) và AC ⊥ AB (gt)
Suy ra: KD // AC (hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song nhau)
Lại có: KE ⊥ AC (gt)
Suy ra: KE ⊥ KD (quan hệ giữa tính vuông góc và tính song song)
Hay: ∠(DKE) = 90o⇒ ∠K1 +∠K2 = 90o
Từ (1) và (2) suy ra: ∠(AKB) + ∠(AKC) = 2∠K1 + 2∠K2
= 2.( ∠K1 +∠K2 ) = 2.90o = 180o.
Vậy B, K, C thẳng hàng.
Bài 66 trang 49 sách bài tập Toán 7 Tập 2: Dựa vào kết quả của bài 65, hãy chứng minh rằng:
a. Các đường trung trực của tam giác vuông đi qua trung điểm của cạnh huyền.
b. Trong tam giác vuông, đường trung tuyến ứng với cạnh huyền bằng một nửa cạnh huyền.
Lời giải:
a. Kẻ đường trung trực của AC cắt BC tại K
Nối AK.
Ta có: KA = KC (tính chất đường trung trực)
Suy ra: Δ KAC cân tại K
Suy ra: ∠(KAC) = ∠C (1)
Lại có: ∠C + ∠B = 90o (t/chất tam giác vuông) (2)
Mà: ∠(KAC) + ∠(KAB) = ∠(BAC) = 90o (3)
Suy ra: Δ KAB cân tại K ⇒ KA = KB
Suy ra: K thuộc đường trung trực của AB
Do đó K là giao điểm ba đường trung trực của Δ ABC
Suy ra: KB = KC = KA ⇒ K là trung điểm của BC
Vậy các đường trung trực của tam giác vuông đi qua trung điểm cạnh huyền
b. Giả sử Δ ABC có ∠A = 90o.
Gọi M là trung điểm của BC.
Trên tia đối của tia MA lấy điểm D sao cho MD = MA
Xét Δ AMC và Δ BMD, ta có:
BM = CM (gt)
∠(AMC) = ∠(BMD) (đối đỉnh)
MA = MD (theo cách vẽ)
Suy ra: Δ AMC = Δ BMD (c.g.c) ⇒ ∠(MAC) = ∠D (hai góc tương ứng)
Suy ra: BD // AC (vì có cặp góc so le trong bằng nhau)
Mà: AC ⊥ AB (gt)
Suy ra: BD ⊥ AB hay ∠(ABD) = 90o
Xét Δ ABC và Δ BAD, ta có:
∠(BAC) = ∠(ABD) = 90o
AB cạnh chung
BD = AC (vì Δ AMC = Δ BMD)
Suy ra: Δ ABC = Δ BAD (c.g.c) ⇒ AD = BC
Mà AM = MD = 1/2 AD nên AM = 1/2 BC
Vậy trong tam giác vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền.
Bài 67 trang 50 sách bài tập Toán 7 Tập 2: Có một chi tiết máy (mà đường viền ngoài là đường tròn) bị gãy (hình bên). Hãy nêu cách xác định tâm của đường viền.
Lời giải:
Lấy ba điểm A, B, C phân biệt trên đường viền.
Dựng đường trung trực của AB và BC. Hai đường trung trực cắt nhau tại O.
Đoạn OA, OB, OC chính là bán kính của đường viền.
Bài 68 trang 50 sách bài tập Toán 7 Tập 2: Cho tam giác ABC cân tại A, đường trung tuyến AM. Đường trung trực của AC cắt đường thẳng Am ở D. Chứng minh rằng DA = DB.
Lời giải:
Vì ∆ABC cân tại A, AM là đường trung tuyến ứng với cạnh đáy BC nên AM cũng là đường trung trực của BC.
Vì D là giao điểm của các đường trung trực AC và BC nên D thuộc đường trung trực của AB.
Theo tính chất đường trung trực, ta có:
DA = DB.
Bài 69 trang 50 sách bài tập Toán 7 Tập 2: Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB và của AC cắt nhau ở O và cắt BC theo thứ tự ở D và E.
a. Các tam giác ABD, ACE là tam giác gì?
b. Đường tròn tâm O bán kính OA đi qua những điểm nào trong hình vẽ?
Lời giải:
a. Vì D thuộc đường trung trực của AB nên:
DA = DB (tính chất đường trung trực)
Suy ra: ΔADB cân tại D.
Vì E thuộc đường trung trực của AC nên:
EA = EC (tính chất đường trung trực)
Suy ra: ΔAEC cân tại A.
b. Vì O là giao điểm ba đường trung trực của ∆ABC nên:
OA = OB = OC
Vậy (O; OA) đi qua ba điểm A, B, C.
Bài 8.1 trang 50 sách bài tập Toán 7 Tập 2: Cho tam giác cân (không đều) ABC có AB = AC. Hai đường trung trực của hai cạnh AB, AC cắt nhau tại O. Khi đó khẳng định nào sau đây là đúng?
(A) OA > OB;
(B) ∠(AOB) > ∠(AOC) ;
(C) AO ⊥ BC;
(D) O cách đều ba cạnh của tam giác ABC.
Lời giải:
Vì O thuộc đường trung trực của cạnh AB nên OA = OB. Vì ba đường trung trực của một tam giác đồng quy nên OA là đường trung trực của BC, do đó AO ⊥ BC. Vì tam giác ABC cân tại A nên đường trung trực AO đồng thời là đường phân giác của góc A, do đó ΔAOB = ΔAOC, suy ra ∠(AOB) = ∠(AOC) . Do đó tam giác ABC cân tại A nhưng không là tam giác đều nên O không là giao điểm của ba đường phân giác của tam giác ABC. Vậy O không cách đều ba cạnh của tam giác ABC.
Đáp số (C) AO ⊥ BC.
Bài 8.2 trang 50 sách bài tập Toán 7 Tập 2: Cho tam giác ABC vuông tại A. Gọi P, Q, R lần lượt là trung điểm của ba cạnh AB, AC, BC. Gọi O là giao điểm của ba đường phân giác. Khi đó, tâm đường trong ngoại tiếp tam giác ABC là điểm:
(A) O
(B) P;
(C) Q;
(D) R.
Hãy chọn phương án đúng.
Lời giải:
Chọn đáp án D
Bài 8.3 trang 50 sách bài tập Toán 7 Tập 2: Cho tam giác ABC có ∠A = 100o. Các đường trung trực của AB và AC lần lượt cắt BC ở E và F. Tính ∠(EAF) .
Lời giải:
Vì E thuộc đường trung trực của đoạn thẳng AB nên EA = EB, hay tam giác EAB cân tại đỉnh E. Suy ra B = (A_1 ) . Tương tự, có C = (A_2 ) . Ta có:
∠(EAF) = ∠A − (∠A1 + ∠A2 ) = ∠A − (∠B + ∠C )
Mặt khác
∠B + ∠C = 180o − A = 180o − 100o = 80o
Do đó ∠(EAF) = 100o − 80o = 20o.
Bài 8.4 trang 50 sách bài tập Toán 7 Tập 2: Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB; AC cắt nhau tại O và lần lượt cắt BC tại M, N. Chứng minh rằng AO là tia phân giác của góc MAN.
Lời giải:
Theo bài 8.3 ta đã có A1 = B1 , A2 = C2 (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra ∠(OAB) = ∠(OBA) , ∠(OAC) = ∠(OCA) , ∠(OBC) = ∠(OCB) . Kết hợp với(1) ∠(OBM) = ∠(OAM) , ∠(OCN) = ∠(OAN) , hay ∠(OAM) = ∠(OBC) = ∠(OCB) = ∠(OAN). Vậy OA là tia phân giác góc MAN.