Xem toàn bộ tài liệu Lớp 9: tại đây
Phương pháp giải
Bước 1: Tìm đkxđ.
Bước 2: Đặt một (hoặc nhiều) biểu thức thích hợp làm ẩn mới, (thường là các biểu thức chứa căn thức) tìm điều kiện của ẩn mới.
Bước 3: Biến đổi phương trình theo ẩn mới (Có thể biến đổi hoàn toàn thành ẩn mới hoặc để cả 2 ẩn cũ và mới) rồi giải phương trình theo ẩn mới.
Bước 4: Thay trả lại ẩn cũ và tìm nghiệm, đối chiếu đkxđ và kết luận.
Ví dụ minh họa
Ví dụ 1: Giải phương trình
Hướng dẫn giải:
Đkxđ: ∀ x ∈ R.
Phương trình trở thành:
t2 + t – 42 = 0 ⇔ (t – 6)(t + 7) = 0
Với t = 6 ⇒
⇔ 2x2 + 3x + 9 = 36
⇔ 2x2 + 3x – 27 = 0
⇔ (x-3) (2x+9) = 0 .
⇔ x = 3 hoặc x = -9/2
Vậy phương trình có hai nghiệm x = 3 và x = -9/2.
Ví dụ 2: Giải phương trình
Hướng dẫn giải:
Đkxđ : 4x2 + 5x + 1 ≥ 0
Phương trình trở thành : a – b = a2 – b2
⇔ (a-b)(a+b-1) = 0 ⇔ a – b = 0 hoặc a + b – 1 = 0.
TH1 : a – b = 0 ⇔ 9x – 3 = 0 ⇔ x = 1/3 (t.m đkxđ).
⇒ Phương trình (*) vô nghiệm.
Vậy phương trình có nghiệm duy nhất x = 1/3 .
Ví dụ 3: Giải phương trình:
Hướng dẫn giải:
Đkxđ: ∀ x ∈ R.
Phương trình trở thành: t2 – (x+3)t + 3x = 0
⇔ (t-3)(t-x) = 0 ⇔ t = 3 hoặc t = x .
+ t = 3 ⇒
+ t = x ⇒
Vậy phương trình có hai nghiệm .
Bài tập trắc nghiệm tự luyện
Bài 1: Cho phương trình:
A. t ∈ R B. t ≤ 1
C. t ≥ 1 D. t ≥ -1 .
Đáp án: D
Bài 2: Số nghiệm của phương trình
A. 0 B. 2 C. 4 D. 6
Đáp án: B
Bài 3: Tập nghiệm của phương trình
A. 0 B. 2 C. 4 D. 6
Đáp án: B
Bài 4: Cho phương trình
A. Phương trình có nghiệm âm duy nhất.
B. Phương trình có 2 nghiệm trái dấu.
C. Phương trình có 2 nghiệm âm.
D. Phương trình có hai nghiệm dương.
Đáp án: D
Bài 5: Phương trình
A. 3/2 B. 1 C. 2/3 D. -3/2 .
Đáp án: C
Bài 6: Giải phương trình
Hướng dẫn giải:
Ta có:
Phương trình trở thành: t + t3 – 30 = 0 ⇔ (t-3)(t2 + 3t + 10) = 0 ⇔ t = 3
Thay trả lại biến x ta được:
⇔ x2 – 4x + 31 = 27
⇔ x2 – 4x + 4 = 0
⇔ (x-2)2 = 0
⇔ x = 2.
Vậy phương trình có nghiệm x = 2.
Bài 7: Giải phương trình :
Hướng dẫn giải:
a) Đkxđ:
Phương trình trở thành:
Vậy phương trình có nghiệm x = 1.
b) Đkxđ: x – 1/x ≥ 0 ; x ≠ 0 .
Chia cả hai vế của phương trình cho x ta được:
Pt trở thành: t2 + 2t – 3 = 0 ⇔ (t + 3)(t – 1) = 0 ⇔ t = -3(L) hoặc t = 1 (t/m) .
+ t = 1
Vậy phương trình có hai nghiệm
c) Đkxđ: x ≥ -1 .
Phương trình trở thành : 2a2 – 5ab + 2b2 = 0
⇔ (2a-b) (a-2b) = 0
⇔ a = b/2 hoặc a = 2b
+ a = b/2 ⇔
⇔ x2 – x + 1 = 4(x+1) ⇔ x2 – 5x – 3 = 0 ⇔
+ a = 2b ⇔
⇔ x+1 = 4(x2 – x + 1)⇔ 4x2 -5x + 3 = 0
Phương trình vô nghiệm.
Vậy phương trình có hai nghiệm
Bài 8: Giải phương trình:
Hướng dẫn giải:
a) Đkxđ: x2 ≤ 15.
Đặt
⇒ a2 – b2 = (25 – x2) – (15 – x2) = 10
Thay trả lại biến x ta được:
Vậy phương trình có hai nghiệm
b)
Đkxđ: x ≥ 1.
Đặt
⇒ u3 + v2 = 2 – x + x – 1 = 1(*)
Mà theo đề bài ta có u + v = 1 ⇒ v = 1 – u
Thay v = 1 – u vào (*) ta được: u3 + (1 – u)2 = 1
⇔ u3 + u2 – 2u + 1 = 1
⇔ u3 + u2 – 2u = 0
⇔ u(u2 + u – 2) = 0
⇔ u(u – 1)(u + 2) = 0
⇔ u = 0 hoặc u = 1 hoặc u = -2.
+ u = 0 ⇒ x = 2 (t.m)
+ u = 1 ⇒ x = 1 (t.m)
+ u = -2 ⇒ x = 10 (t.m)
Vậy phương trình có ba nghiệm x = 1; x = 2 và x = 10.
c)
Đkxđ: ∀x ∈ R.
Đặt
⇒ a3 – b3 = 2
⇒ (a – b)(a2 + b2 + ab) = 2 (*)
Phương trình trở thành: a2 + b2 + ab = 1 (**)
Thay vào (*) ta được: (a – b).1 = 2 ⇒ a – b = 2 ⇒ a = 2 + b
Thay a = 2 + b vào (**) ta được:
⇔ 3b2 + 6b + 3 = 0
⇔ 3(b + 1)2 = 0
⇔ b = -1
⇒
Thử lại x = 0 là nghiệm của phương trình.
Vậy phương trình có nghiệm x = 0.
Bài 9: Giải phương trình:
Hướng dẫn giải:
Đkxđ: x ≥ 1 .
Đặt
Khi đó
Phương trình trở thành:
a + b = 1 + ab ⇔ ab + 1 – a – b = 0 ⇔ (a – 1)(b – 1) = 0 ⇔ a = 1 hoặc b = 1
+ a = 1 ⇔ √(x-1) = 1 ⇔ x = 2.
+ b = 1 ⇔
⇔ x3 + x2 + x = 0
⇔ x(x2 + x + 1) = 0
⇔ x = 0 (không t.m đkxđ).
Vậy phương trình có nghiệm x = 2.
Bài 10: Giải phương trình:
Hướng dẫn giải:
Đkxđ: -18/5 ≤ x > 64/5 .
Đặt
⇒ a4 + b4 = 18 – 5x + 64 + 5x = 82(*)
Phương trình trở thành: a + b = 4 (**)
⇒ a2 + b2 = (a+b)2 – 2ab = 16 – 2ab
⇒ a4 + b4 = (a2 + b2)2 – 2a2b2 = (16-2ab)2 – 2a2b2= 2a2b2 – 64ab + 256
Hay 2a2b2 – 64ab + 256 = 82
⇔ a2b2 – 64ab + 256 = 82
⇔ 2a2b2 – 32ab + 87 = 0
⇔ (ab – 3)(ab – 29) = 0
⇔ ab = 3 hoặc ab = 29.
+ ab = 3.
Từ (**) ⇒ a = 4 – b.
Thay vào ab = 3 ⇒ (4 – b)b = 3 ⇔ b2 – 4b + 3 = 0 ⇔ (b – 1)(b – 3) = 0 ⇔
Nếu a = 3; b = 1 ⇒ ⇒ x =
Nếu a = 1; b = 3 ⇒ ⇒ x =
Thử lại cả hai đều là nghiệm của phương trình.
+ Nếu ab = 29
Từ (**)⇒ a = 4 – b.
Thay vào ab = 29 ⇒ (4 – b)b= 29 ⇔ b2 – 4b + 29 = 0.
Phương trình vô nghiệm.
Vậy phương trình có hai nghiệm x = 63/5 và x = -17/5
Mục lục các Chuyên đề Toán lớp 9:
box-most-viewed-courses