Chuyên đề: Hệ thức lượng trong tam giác vuông

Xem toàn bộ tài liệu Lớp 9: tại đây

A. Phương pháp giải

1. Định nghĩa các tỉ số lượng giác của góc nhọn:

1, sin α = AB/AC

2, cos α = BC/AC

3, tan α = AB/BC

4, cotg α = BC/AB

2. Một số tính chất của các tỉ số lượng giác

+ Cho hai góc α và β phụ nhau. Khi đó:

sin α = cos β

cos α = sin β

tan α = cotg β

cotg α = tan β

+ Cho góc nhọn α. Ta có:

0 < sin α < 1

0 < cos α < 1

tan α = sin α / cos α

cotg α = cos α / sin α

tan α . cotg α = 1

3. Các hệ thức về cạnh và góc trong tam giác vuông.

Cho tam giác ABC vuông tại A. Khi đó:

b= a. sin B

c= a. sin C

b= a. cos C

c= a. cos B

b= c. tan B

c= b. tan C

b= c. cotg C

c= b. cotg B

B. Bài tập tự luận

Bài 1: Cho tam giác ABC vuông tại A, BC = a, đường cao AH.

a, Chứng minh rằng: AH=a sinBcosB; BH = a cos2B ; CH = a sin2 B

b, Suy ra AB2 = BC.BH ; AH2 = BH.HC

Hướng dẫn giải

a, Chứng minh:

Xét tam giác vuông ABH, ta có:

AH = sinB.AB (1)

Xét tam giác vuông ABC, ta có:

AB = BC.cos B = acos B (2)

Từ (1) và (2) ta có:

AH = a sin B cos B

Tương tự ta có:

+ Xét tam giác vuông ABH: BH = AB.cos B

Xét tam giác vuông ABC: AB = BC.cos B = acos B => BH = a cos2B

+ Xét tam giác vuông ACH: CH = AC.cos C = AC.sin B

Tam giác vuông ABC: AC=BC.sin B=a.sin B => CH = a sin2 B

b, AB2 = a2 cos2B

BC.BH = a.a.cos2B = a2cos2B

=> AB2 = BC.BH

AH2 = a2sin2cos2B

=> AH2 = BH.HC

Bài 2: Giải tam giác trong các trường hợp sau( Làm tròn đến chữ số thập phân thứ nhất).(Tức là tìm tất cả các yếu tố chưa biết của tam giác ABC)

a, Tam giác ABC vuông tại A, biết AB = 3,5; AC = 4,2.

b, Tam giác ABC vuông tại A, biết ∠B = 50o ; AB = 3,7.

Hướng dẫn giải


Bài 3: Giải tam giác ABC, biết ∠B = 65o; ∠C = 40o và BC = 4,2 cm.

Hướng dẫn giải

Ta có: ∠A = 180o – (65o + 45o) = 75o

Vẽ BH ⊥ AC

+ Xét tam giác vuông HBC vuông tại H, theo hệ thức về cạnh và góc trong tam giác vuông, ta có:

BH = BC.sin C = 2,7 (cm)

Và CH = BH.cotg C (1)

+ Xét tam giác vuông ABH tại H, theo hệ thức về cạnh và góc trong tam giác vuông ta có:

BH = AB.sin A => AB = BH/sinA = 2,8 (cm) và AH = BH.cotg A (2)

Từ (1) và (2) ta có:

AC = AH+CH = BH.cotgA + BH.cotgC = BH(Cotg A+Cotg C)= 3,9(cm)

Vậy ∠A = 75o; AB = 2,8(cm); AC = 3,9(cm).

Tham khảo thêm các Chuyên đề Toán lớp 9 khác:

Mục lục các Chuyên đề Toán lớp 9:

box-most-viewed-courses

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1047

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống