Chương I: Tứ giác

Xem toàn bộ tài liệu Lớp 8: tại đây

A. Hoạt động khởi động

(Trang 66 Toán 8 VNEN Tập 1)

Thực hiện đo đạc

Bác Ba muốn tính khoảng cách giữa hai vị trí ở hai bên bờ ao cá. Để làm điều đó bác đã thực hiện đo đạc và vẽ mô phỏng theo tỉ lệ 1 : 600 như hình 16.

Em hãy giúp bác Ba tính khoảng cách giữa hai vị trí A và B ở hai bên bờ ao cá nhé!

Lời giải:

Vẽ điểm F sao cho B là trung điểm của AF.

Dễ dàng nhận thấy: ΔAOB = ΔFNB (c.g.c) ⇒ AO = FN và

Ta có: OA = AM (gt) và OA = FN ⇒ AM = FN.

Lại có

mà hai góc này ở vị trí so le trong nên AO // FN.

⇒ AM // FN ⇒ AMNF là hình thang.

Hình thang AMNF có hai đáy AM và FN bằng nhau nên hai cạnh bên AF và MN song song và bằng nhau.

Như vậy, độ dài đoạn AB sẽ bằng 14,5m.

B. Hoạt động hình thành kiến thức

1 (Trang 67 Toán 8 VNEN Tập 1)

Thực hiện theo yêu cầu

a) Thực hiện theo các bước sau

– Vẽ tam giác ABC.

– Lấy M là trung điểm của AB.

– Từ M kẻ đường thẳng song song với cạnh BC cắt cạnh AC ở N.

Em dùng thước đo độ dài các đoạn AN, CN và dự đoán vị trí điểm N trên cạnh AC.

Lời giải:

Độ dài của các đoạn AN, CN được thể hiện ở hình vẽ dưới đây.

Vị trí điểm N có thể trùng với trung điểm của đoạn thẳng AC.

b) Luyện tập

Em thực hiện chứng minh kết quả trên với giả thiết cạnh thứ hai là AB, N là trung điểm cạnh AC, NP song song với AB. Ta chứng minh P là trung điểm của BC. Em hãy điền vào chỗ chấm (…) để hoàn thiện chứng minh trong lời giải sau:

Từ A kẻ đường thẳng song song với BC cắt đường thẳng PN tại M.

Xét ΔABP và ΔPMA ta có:

⇒ ΔABP = ΔPMA (…)⇒ BP = MA (1)

Xét ΔAMN và ΔCPN ta có:

⇒ ΔAMN = ΔCPN (…)⇒ AM = CP (2)

Từ (1) và (2) suy ra BP = CP hay P là … của BC.

Lời giải:

Từ A kẻ đường thẳng song song với BC cắt đường thẳng PN tại M.

Xét ΔABP và ΔPMA ta có:

⇒ ΔABP = ΔPMA (g.c.g) ⇒ BP = MA (1)

Xét ΔAMN và ΔCPN ta có:

⇒ ΔAMN = ΔCPN (g.c.g) ⇒ AM = CP (2)

Từ (1) và (2) suy ra BP = CP hay P là trung điểm của BC.

2 (Trang 68 Toán 8 VNEN Tập 1)

a) Quan sát hình 19, rút ra nhận xét về vị trí tương đối và tương quan độ dài của MN và BC:

Lời giải:

Quan sát hình 19, ta có thể đưa ra nhận xét: MN // BC và

b) Sử dụng định lí về đường trung bình của tam giác để tính khoảng cách giữa hai vị trí bờ ao cá và kiểm nghiệm lại kết quả đo đạc ban đầu của em (hình 16).

Lời giải:

Theo định lí đường trung bình, ta có:

Như vậy, kết quả tính toán ở phần khởi động là chính xác.

C. Hoạt động luyện tập

1 (Trang 68 Toán 8 VNEN Tập 1)

Thực hành

Cho tam giác ABC, các điểm D, E, F lần lượt là trung điểm của AB, AC và BC.

a) Vẽ các đường trung bình của tam giác ABC.

b) Sử dụng kéo, thước kẻ và các vận dụng cần thiết, cắt ra và chồng lên nhau để so sánh diện tích bốn tam giác mà các đường trung bình tạo thành trên tam giác ABC.

Lời giải:

a) Các đường trung bình của tam giác ABC được thể hiện trong hình vẽ dưới đây:

b) Sau khi so sánh, ta nhận thấy diện tích của bốn tam giác mà các đường trung bình tạo thành trên tam giác ABC có diện tích bằng nhau.

2 (Trang 69 Toán 8 VNEN Tập 1)

a) Tính độ dài đoạn AE, biết DE // BC và AC = 8cm (hình 20).

b) Tính độ dài đoạn thẳng DE, BC, biết AD = 4,5cm; AE = 7,5cm (hình 21).

Lời giải:

a) Xét tam giác ABC, ta có: D là trung điểm AB và DE // BC ⇒ E là trung điểm của AC.

b) Vì D là trung điểm AB nên AB = 2AD =2.4,5 = 9 (cm).

Vì E là trung điểm AC nên AC = 2AE = 2.7,5 = 15 (cm).

Xét tam giác ABC vuông tại B có: BC2 = AC2 – AB2 (Định lí Pitago) ⇒ BC = 12 (cm).

Lại có: D là trung điểm AB và E là trung điểm AC nên DE là đường trung bình của tam giác ABC

3 (Trang 69 Toán 8 VNEN Tập 1)

Cho tam giác ABC, M là trung điểm của BC. Trên cạnh AB lấy D, E sao cho AD = DE = EB. Gọi I là giao điểm của CD và AM. Chứng minh I là trung điểm của AM (hình 22).

Lời giải:

Xét tam giác BDC có: E là trung điểm của BD và M là trung điểm của BC

⇒ ME // DC hay ME // DI.

Xét tam giác AEM có: D là trung điểm của AE và DI // EM

⇒ I là trung điểm của AM.

D+E. Hoạt động vận dụng và tìm tòi mở rộng

1 (Trang 69 Toán 8 VNEN Tập 1)

Hình vẽ bên dưới mô tả các bước gấp chong chóng. Biết độ dài đường chéo của hình vuông ban đầu bằng 20cm.

a) Tính độ các cạnh của hình vuông được tạo thành bởi các nếp gấp ở hình 23b.

b) Tính độ dài các cạnh của một cánh chong chóng ở hình 23i.

Lời giải:

Vì ABCD là hình vuông nên ta có: AC2=AB2+BC2=202+202

Xét tam giác ABC, có: M, N lần lượt là trung điểm của AB, BC

⇒ MN là đường trung bình của tam giác ABC.

Như vậy, độ dài các cạnh của hình vuông được tạo bởi các nếp gấp ở hình 23b là cm.

b)

Theo hình vẽ, ta thấy:

2 (Trang 70 Toán 8 VNEN Tập 1)

Bác Gấu có một miếng bánh hình tam giác và cần phải chia chiếc bánh thành bốn phần giống hệt nhau cho bốn chú Gấu con. Em hãy giúp bác Gấu nhé!

Lời giải:

Để chia một hình tam giác thành 4 phần giống hệt nhau, ta vẽ các đường trung bình của hình tam giác đó:

3 (Trang 70 Toán 8 VNEN Tập 1)

a) Từ một hình tam giác ban đầu, em hãy vẽ các đường trung bình trong tam giác đó và tính tỉ số chu vi giữa tam giác tạo bởi các đường trung bình và tam giác ban đầu.

b) Hình dưới mô tả cách tạo ra hình học fractal từ các đường trung bình trong tam giác.

Biết chu vi hình tam giác ban đầu bằng 1, hãy tính tổng chu vi tất cả các hình tam giác được tô màu ở bước 2, bước 3.

Lời giải:

b) Như đã tính ở phần a, ta có:

Chu vi hình tam giác được tô màu ở bước 2 bằng 12

Chu vi các hình tam giác được tô màu ở bước 3 bằng 14.3 + 12 = 54.

Câu 1 (Trang 70 Toán 8 VNEN Tập 1): Cho tam giác ABC, các đường trung tuyến BD, CE. Gọi M, N theo thứ tự là trung điểm BE, CD. Gọi I, K theo thứ tự là giao điểm của MN với BD, CE. Chứng minh rằng MI = IK = KN.

Trả lời:

Đặt BC = a.

Vì tam giác ABC có AE = EB, AD = DC nên ED là đường trung bình, do đó ED // BC và

Do MN là đường trung bình của hình thang BEDC nên MN // ED // BC.

Tam giác BED có BM = ME, MI // ED nên MI là đường trung bình,

Tam giác CED có CN = ND, NK // ED nên NK là đường trung bình,

Tam giác EBC có EM = MB, MK // BC nên MK là đường trung bình,

Suy ra

Vậy MI = IK = KN.

Câu 2 (Trang 70 Toán 8 VNEN Tập 1):

Cho hình thang ABCD (AB // CD). Gọi M, N, P lần lượt là trung điểm của AD, AC, BC.

a) Chứng minh rằng M, N, P thẳng hàng và MP song song với hai đáy của hình thang.

b) Biết độ dài AB = 5cm, CD = 7cm. Tính độ dài MN, MP, NP.

c) Có nhận xét gì về độ dài đoạn thẳng MP so với tổng độ dài hai đáy AB và CD?

Trả lời:

a) Xét tam giác ACD, có: M là trung điểm của AD và N là trung điểm của AC (gt)

⇒ MN là đường trung bình của tam giác ACD.

⇒ MN // CD (1).

Xét tam giác ABC, có: N là trung điểm của AC và P là trung điểm của BC (gt)

⇒ NP là đường trung bình của tam giác ABC.

⇒ NP // AB mà AB // CD (gt) ⇒ NP // CD (2).

Từ (1) và (2) ⇒ M, N, P thẳng hàng.

Xét hình thang ABCD, có: M là trung điểm của AD và P là trung điểm của BC (gt)

⇒ MP là đường trung bình của hình thang ABCD.

⇒ MP // AB // CD.

b) Ta có: MN = CD (MN là đường trung bình của tam giác ACD)

⇒ MN = .7 = 3,5 (cm).

Ta có: NP = AB ( NP là đường trung bình của tam giác ABC)

⇒ NP = .5 = 2,5 (cm).

Như vậy, MP = MN + NP = 3,5 + 2,5 = 6 (cm).

c) Ta có: MP là đường trung bình của hình thang ABCD (cmt) ⇒ MP = (AB + CD).

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 962

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống