Chương 1: Phép dời hình và phép đồng dạng trong mặt phẳng

Xem toàn bộ tài liệu Lớp 11: tại đây

Sách Giải Sách Bài Tập Toán 11 Bài 3: Phép đối xứng trục giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Bài 1.6 trang 16 Sách bài tập Hình học 11: Trong mặt phẳng tọa độ Oxy, cho điểm M(3; -5), đường thẳng d có phương trình 3x + 2y – 6 = 0 và đường tròn (C) có phương trình x2 + y2 − 2x + 4y – 4 = 0. Tìm ảnh của M, d, và (C) qua phép đối xứng qua trục Ox

Lời giải:

Gọi M′, d′ và (C’) theo thứ tự là ảnh của M, d và (C) qua phép đối xứng qua trục Ox . Khi đó M′ = (3;5) . Để tìm ta viết biểu thức tọa độ của phép đối xứng qua trục:

Thay (1) vào phương trình của đường thẳng d ta được 3x′ − 2y′ − 6 = 0. Từ đó suy ra phương trình của d’ là 3x − 2y – 6 = 0

Thay (1) vào phương trình của (C) ta được x′2 + y′2 − 2x′ + 4y′ − 4 = 0 . Từ đó suy ra phương trình của (C’) là (x − 1)2 + (y − 2)2 = 9.

Cũng có thể nhận xét (C) có tâm là I(1; −2), bán kính bằng 3, từ đó suy ra tâm I’ của (C’) có tọa độ (1;2) và phương trình của (C’) là (x − 1)2 + (y − 2)2 = 9

Bài 1.7 trang 16 Sách bài tập Hình học 11: Trong mặt phẳng Oxy cho đường thẳng d có phương trình x − 5y + 7 = 0 và đường thẳng d’ có phương trình 5x – y – 13 = 0. Tìm phép đối xứng trục biến d thành d’.

Lời giải:

Dễ thấy d và d’ không song song với nhau. Do đó trục đối xứng Δ của phép đối xứng biến d thành d’ chính là đường phân giác của góc tạo bởi d và d’. Từ đó suy ra Δ có phương trình:

Từ đó tìm được hai phép đối xứng qua các trục:

Δ1 có phương trình: x + y – 5 = 0,

Δ2 có phương trình: x – y – 1 = 0.

Bài 1.8 trang 16 Sách bài tập Hình học 11: Tìm các trục đối xứng của hình vuông

Lời giải:

Cho hình vuông ABCD. Gọi F là phép đối xứng trục d biến hình vuông đó thành chính nó. Lí luận tương tự, ta thấy A chỉ có thể biến thành các điểm A, B, C hoặc D

– Nếu A biến thành chính nó thì C chỉ có thể biến thành chính nó và B biến thành D. Từ đó suy ra F là phép đối xứng qua trục AC

– Nếu A biến thành B thì d là đường trung trực của AB. Khi đó C biến thành D.

Các trường hợp khác lập luận tương tự. Do đó hình vuông ABCD có bốn trục đối xứng là các đường thẳng AC, BD và các đường trung trực của AB và BC.

Bài 1.9 trang 16 Sách bài tập Hình học 11: Cho hai đường thẳng c, d cắt nhau và hai điểm A, B không thuộc hai đường thẳng đó. Hãy dựng điểm C trên c, điểm D trên d sao cho tứ giác ABCD là hình thang cân nhận AB là một cạnh đáy ( không cần biện luận ).

Lời giải:

Ta thấy rằng B, C theo thứ tự là ảnh của A, D qua phép đối xứng qua đường trung trực của cạnh AB, từ đó suy ra cách dựng:

– Dựng đường trung trực Δ của đoạn ab

– Dựng d’ là ảnh của d qua phép đối xứng qua trục Δ.

Gọi C = d′ ∩ c.

– Dựng D là ảnh của C qua phép đối xứng qua trục Δ.

Bài 1.10 trang 16 Sách bài tập Hình học 11: Cho đường thẳng d và hai điểm A, B không thuộc d nhưng nằm cùng phía đối với d. Tìm trên d điểm M sao cho tổng các khoảng cách từ đó đến A và B là bé nhất.

Lời giải:

Gọi B’ là ảnh của B qua phép đối xứng qua trục d. Khi đó với mỗi điểm M thuộc d

MA + MB = MA + MB′ nên MA + MB′ bé nhất ⇔ A, M, B′ thẳng hàng.

Tức là M = (AB′) ∩ d.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1031

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống