Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Giải Toán Lớp 11 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách Giải Sách Bài Tập Toán 11 Đề toán tổng hợp chương 3 giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 3.49 trang 153 Sách bài tập Hình học 11: Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.
a) Chứng minh AC ⊥ SD
b) Chứng minh MN ⊥ (SBD)
c) Cho AB = SA = a. Tính coossin của góc giữa (SBC) và (ABCD)
Lời giải:
a) (AC ⊥ SH & AC ⊥ BD ⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.
b) (MN//AC & AC ⊥ (SBD) ⇒ MN ⊥ (SBD).
c) + Xác định góc α giữa (SBC) và (ABCD)
Gọi I là trung điểm của BC, ta có:
(BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)
⇒ BC ⊥ SI.
⇒ [((SBC),(ABCD)) ] = ∠(SIH) = α.
+ Tính α:
Trong tam giác SIH, ta có: cosα = IH/IS = √3/3 ⇒ α = arccos√3/3.
Bài 3.50 trang 153 Sách bài tập Hình học 11: Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, SA vuông góc với đáy.
a) Chứng minh tam giác SBC vuông
b) Gọi H là chân đường cao vẽ từ B của tam giác ABC.
Chứng minh (SAC) ⊥ (SBH)
c) Cho AB = a, BC = 2a. Tính khoảng cách từ B đến mặt phẳng (SAC)
Lời giải:
a) BC ⊥ SA & BC ⊥ AB) ⇒ BC ⊥ (SAB)
⇒ BC ⊥ SB.
⇒ tam giác SBC vuông tại B.
b) BH ⊥ AC & BH ⊥ SA ⇒ BC ⊥ (SAC)
⇒ (SBH) ⊥ (SAC).
c) d[B, (SAC)] = BH. Ta có:
Bài 3.51 trang 153 Sách bài tập Hình học 11: Cho hình chóp S.ABCD, đáy ABCD là hình thoi cạnh a, ∠BAD = 60ο, SA = SB = SD = a.
a) Chứng minh (SAC) vuông góc với (ABCD).
b) Chứng minh tam giác SAC vuông.
c) Tính khoảng cách từ S đến (ABCD).
Lời giải:
a) Nhận xét: Tam giác ABD là tam giác đều. Gọi H là hình chiếu vuông góc của S xuống mặt phẳng (ABD), ta có:
Hình 3.91
SA = SB = SD ⇒ H là tâm đường tròn ngoại tiếp tam giác ABD
⇒ H là trọng tâm tam giác ABD
⇒ H ∈ AC.
⇒ (SAC) ⊥ (ABCD).
b) Ta có:
Bài 3.52 trang 153 Sách bài tập Hình học 11: Cho tứ diện O.ABC có OA, OB, OC đôi một vuông góc và các cạnh OA = OB = OC = a, gọi I là trung điểm BC.
a) Chứng minh rằng: BC ⊥ (AOI), (OAI) ⊥ (ABC).
b) Tính góc giữa AB và mặt phẳng (AOI).
c) Tính góc giữa các đường thẳng AI và OB.
Lời giải:
a) (BC ⊥ OA & BC ⊥ OI ⇒ BC ⊥ (OAI)
⇒ (ABC) ⊥ (OAI).
b) + Xác định góc α giữa AB và mặt phẳng (AOI)
(A ∈ (OAI) & BI ⊥ (OAI) ⇒ ∠[(AB,(OAI))] = ∠(BAI) = α.
+ Tính α:
Trong tam giác vuông BAI, ta có: sinα = 1/2 ⇒ α = 30o.
c) Xác định góc β giữa hai đường thẳng AI và OB:
Gọi J là trung điểm OC, ta có: IJ // OB và IJ ⊥ (AOC). Như vậy:
∠[(AB,OB)] = ∠[(AI,IJ)] = ∠(AIJ) = β.
+ Tính góc:
Trong tam giác IJA, ta có: tan β = AJ/IJ = √5 ⇒ β = arctan√5.
Bài 3.53 trang 153 Sách bài tập Hình học 11: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a và SA ⊥ (ABCD).
a) Chứng minh BD ⊥ SC.
b) Chứng minh (SAB) ⊥ (SBC).
c) Cho SA = (a√6)/3. Tính góc giữa SC và mặt phẳng (ABCD).
Lời giải:
a) (BD ⊥ SA & BD ⊥ AC ⇒ BD ⊥ (SAC)
⇒ BC ⊥ SC.
b) (BC ⊥ SA & BC ⊥ AB ⇒ BC ⊥ (SAB)
⇒ (SBC) ⊥ (SAB).
c) + Xác định góc α giữa đường thẳng SC và mp(ABCD):
(C ∈(ABCD) & SA ⊥ (ABCD) ⇒ ∠[(SC,(ABCD))] = ∠(ACS) = α
+ Tính góc:
Tam tam giác vuông SCA, ta có:
tanα = SA/AC = √3/3 ⇒ α = 30o.
Bài tập trắc nghiệm
Bài tập trắc nghiệm