Đại số – Chương 4: Hàm Số y = ax (a ≠ 0) – Phương Trình Bậc Hai Một Ẩn

Xem toàn bộ tài liệu Lớp 9: tại đây

Sách Giải Sách Bài Tập Toán 9 Bài 5: Công thức nghiệm thu gọn giúp bạn giải các bài tập trong sách bài tập toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Bài 27 trang 55 Sách bài tập Toán 9 Tập 2: Xác định a, b’,c trong mỗi phương trình rồi giải phương trình bằng công thức nghiệm thu gọn:

a. 5x2 – 6x -1 = 0     b. -3x2 + 14x – 8 = 0

c. -7x2 + 4x = 3     d. 9x2 + 6x + 1 = 0

Lời giải:

a. Phương trình 5x2 – 6x -1 = 0 có hệ số a = 5, b’ = -3, c = -1

Ta có: Δ’ = b’2 – ac = (-3)2 -5.(-1) = 9 + 5 = 14 > 0

√Δ’ =√14

Phương trình có hai nghiệm phân biệt :

b. Phương trình -3x2+ 14x – 8 = 0 có hệ số a = -3, b’= 7, c = -8

Ta có: Δ’ = b’2 – ac = 72 – (-3).(-8) = 49 – 24 > 0

√Δ’ = √25 = 5

Phương trình có 2 nghiệm phân biệt:

c. Phương trình -7x2 +4x=3 ⇔ 7x2 -4x+3 = 0 có hệ số a=7, b’=-2 , c=3

Ta có: Δ’ = b’2 – ac = (-2)2 -7.3 = 4- 21= -17 < 0

Vậy phương trình vô nghiệm

d. Phương trình 9x2 +6x+1 =0 có hệ số a=9,b’=3,c=1

Ta có: Δ’ = b’2 – ac = 32 -9.1 = 9 – 9 = 0

Phương trình có nghiệm kép:

x1 = x2 = -b’/a =-3/9 =-1/3

Bài 28 trang 55 Sách bài tập Toán 9 Tập 2: Với những giá trị nào của x thì giá trị của hai biểu thức sau bằng nhau?

a. x2 +2 + 2√2 = 2(1+√2 )x

b. √3 x2 + 2x -1 = 2√3 x +3

c. -2√2 x – 1 =√2 x2 + 2x +3

d. x2 – 2√3 x – √3 = 2x2 +2x +√3

e. √3 x2 + 2√5 x – 3√3 = -x2 – 2√3 x +2√5 +1

Lời giải:

a,Ta có: x2 +2 + 2√2 = 2(1+2 )x ⇔ x2 – 2(1+√2 )x +2 +2√2 = 0

Δ’ = b’2 – ac = [-(1+√2 )]2– 1(2+2√2 )

= 1 + 2√2 +2 -2 -2√2 =1 > 0

√Δ’ = √1 =1

Vậy với x= 2+ √2 hoặc x =√2 thì giá trị của hai biểu thức trên bằng nhau

b. Ta có: √3 x2 + 2x -1 = 2√3 x +3 ⇔ 3 x2 + 2x – 2√3 x -3 -1 = 0

⇔ √3 x2 + (2 – 2√3 )x -4 =0 ⇔ √3 x2 + 2(1 – √3 )x -4 = 0

Δ’ = b’2 – ac= (1- √3 )2 – √3 (-4) =1 – 2√3 +3 +4√3

= 1 + 2√3 +3 = (1 + 3 )2 > 0

Vậy với x= 2 hoặc x = (-2√3)/3 thì giá trị của hai biểu thức trên bằng nhau

c,Ta có: -2√2 x – 1 =√2 x2 + 2x +3 ⇔ √2 x2 +2x + 3 + 2√2 x + 1=0

⇔√ 2 x2 + 2(1 + √2 )x +4 =0

Δ’ = b’2 – ac= (1+ √2 )√ – √2 .4= 1+2√2 +2 – 4√2

= 1-2√2 +2 = (√2 -1)√ > 0

Vậy với x= -√2 hoặc x = -2 thì giá trị của hai biểu thức trên bằng nhau

d.Ta có: x2 – 2√3 x – √3 = 2x2 +2x +√3

⇔ x2 – 2√3 x – √3 – 2x2 -2x – √3 =0

⇔ x2 +2x +2√3 x +2√3 =0

⇔ x2 + 2(1 +√3 )x + 2√3 =0

Δ’ = b’2 – ac= (1+ √3 )√ – 1. 2√3 = 1 + 2√3 +√3 -2√3 =4>0

√Δ’ = √4 =2

Vậy với x=1 – √3 hoặc x = – 3 – √3 thì giá trị của hai biểu thức trên bằng nhau

e.Ta có: √3 x2 + 2√5 x – 3√3 = -x2 – 2√3 x +2√5 +1

⇔ √3 x2 + 2√5 x – 3√3 + x2 + 2√3 x – 2√5 – 1= 0

⇔ (√3 +1)x2 + (2√5 + 2√3 )x -3√3 – 2√5 – 1= 0

⇔ (√3 +1)x2 + 2(√5 + √3 )x -3√3 – 2√5 – 1= 0

Δ’ = b’√ – ac= (√3 + √5 )√ – (√3 +√1)( -3√3 – 2√5 – 1)

= 5 + 2√15 +3+9 +2√15 + √3 +3√3 +2√5 + 1

=18 +4√15 +4√3 +2√5

= 1 + 12 + 5 + 2.2√3 + 25 + 2.2√3 .√5

= 1 + (2√3 )√ + (√5 )√ + 2.1.2√3 +2.1.√5 + 2.2√3 .√5

= (1 +2√3 +√5 )√ > 0

Bài 29 trang 55 Sách bài tập Toán 9 Tập 2: Một vận động viên bơi lội nhảy cầu (xem hình dưới). Khi nhảy độ cao h từ người đó đến mặt nước (tính bằng mét ) phụ thuộc vào khoảng cách x từ điểm rơi đến chân cầu (tính bằng mét) bởi công thức : h= – (x -1)2 +4 . Hỏi cách x bằng bao nhiêu:

a. Khi vận động viên ở độ cao 3m?

b. Khi vận động viên chạm mặt nước?

Lời giải:

Khi vận động viên ở độ cao 3m nghĩa là h =3m

Ta có: 3 =- (x – 1)2 + 4 ⇔ (x – 1)2 – 1=0 ⇔ x2 – 2x = 0

⇔ x(x – 2) = 0 ⇔ x=0 hoặc x – 2 =0 ⇔ x = 0 hoặc x = 2

Vậy x = 0m hoặc x = 2m

Khi vận động viên chạm mặt nước nghĩa là h = 0m

Ta có: 0 = – (x – 1)2 + 4 ⇔ x2 -2x -3 =0

Δ’ = b’2 – ac = (-1)2 -1.(-3) =1 +3 = 4 > 0

Vì khoảng cách không thể mang giá trị âm nên x=3m

Bài 30 trang 56 Sách bài tập Toán 9 Tập 2: Tính gần đúng nghiệm của phương trình (làm tròn đến chữ số thập phân thứ hai ):

a.16x2 – 8x +1=0     b.6x2 – 10x -1 =0

c. 5x2 +24x +9 =0     d.16x2 – 10x +1 =0

Lời giải:

a) 16x2 – 8x +1=0

Ta có: Δ’ = (-4)2 – 16.1 = 16 -16 =0

Phương trình có nghiệm kép :

c) 5x2 +24x +9 =0

Ta có: Δ’ =122 -5.9 =144 +45 =99 > 0

√Δ’ = √99 =3√11

Phương trình có 2 nghiệm phân biệt:

Bài 31 trang 56 Sách bài tập Toán 9 Tập 2: Với giá trị nào của x thì giá trị của hai hàm số bằng nhau?

Lời giải:

Bài 32 trang 56 Sách bài tập Toán 9 Tập 2: Với giá trị nào của m thì :

a. Phương trình 2x2 – m2x +18m = 0 có một nghiệm x = -3

b. Phương trình mx2 – x – 5m2 = 0 có một nghiệm x = -2

Lời giải:

a) Thay x=-3 vào phương trình 2x2 – m2x +18m =0 ta được:

2(-3)2 – m2(-3) + 18m =0 ⇔ 3m2 +18m+18 =0

⇔ m2 + 6m +6 = 0

Δ’ = 32 -1.6 = 9 -6 =3 > 0

√Δ’ = √3

Phương trình có 2 nghiệm phân biệt:

Vậy với m = 3 – 3 hoặc m =- 3- 3 thì phương trình đã cho có nghiệm x= -3

b) Thay x = -2 vào phương trình mx2 – x – 5m2 = 0 ta được:

m(-2)2 – (-2) – 5m2=0 ⇔ 5m2 – 4m -2 =0

Δ’ = (-2)2 -5.(-2) = 4+10 = 14 > 0

√Δ’ = √14

Phương trình có 2 nghiệm phân biệt:

Bài 33 trang 56 Sách bài tập Toán 9 Tập 2: Với giá trị nào của m thì các phương trình sau có 2 nghiệm phân biệt

a. x2 – 2(m+3)x + m2 + 3 = 0

b.(m+1)x2 + 4mx + 4m – 1 = 0

Lời giải:

a. x2 – 2(m+3)x + m2+3=0     (1)

Ta có: Δ’ = [-(m+3)]2 -1.(m2 +3) = m2 + 6m + 9 – m2 – 3

= 6m +6

Phương trình (1) có 2 nghiệm phân biệt khi và chỉ khi:

Δ’ > 0 ⇔ 6m + 6 > 0 ⇔ 6m > -6 ⇔ m > -1

Vậy m > -1 thì phương trình đã cho có 2 nghiệm phân biệt

b. (m+1)x2+4mx+4m -1 =0     (2)

Ta có: Δ’ = (2m)2 – (m +1)(4m -1) = 4m2 – 4m2 + m – 4m +1

= 1 – 3m

Phương trình (2) có 2 nghiệm phân biệt khi và chỉ khi:

*m +1 ≠ 0 ⇔ m ≠ -1

và *Δ’ > 0 ⇔ 1 -3m > 0 ⇔ 3m < 1 ⇔ m < 1/3

Vậy m < 1/3 và m ≠ -1 thì phương trình đã cho có 2 nghiệm phân biệt

Bài 34 trang 56 Sách bài tập Toán 9 Tập 2: Với giá trị nào của m thì các phương trình sau có nghiệm kép

a. 5x2 + 2mx – 2m +15 =0

b. mx2 – 4(m -1)x -8 =0

Lời giải:

a. 5x2 + 2mx – 2m +15 =0     (1)

Ta có: Δ’=m2 – 5.(-2m +15) = m2 +10m -75

Phương trình (1) có nghiệm kép khi và chỉ khi:

Δ’= 0 ⇔ m2 + 10m – 75 = 0

Δ’m = 52 -1.(-75) = 25 +75 = 100 > 0

√(Δ’m) = √100 =10

Phương trình có 2 nghiệm phân biệt:

Vậy m =5 hoặc m=-15 thì phương trình đã cho có nghiệm kép

b. mx2 – 4(m -1)x -8 =0     (2)

Phương trình (2) có nghiệm kép khi và chỉ khi: m≠ 0 và Δ’=0

Ta có: Δ’=[-2(m-1)]2 – m(-8)=4(m2 -2m +1) +8m

=4m2– 8m +4 +8m = 4m2 +4

Vì 4m2 +4 luôn luôn lớn hơn 0 nên Δ’ không thể bằng 0 .Vậy không có giá trị nào của m để phương trình có nghiệm kép

Bài 1 trang 56 Sách bài tập Toán 9 Tập 2: Giả sử x1, x2 là hai nghiệm của phương trình bậc hai ax2 + bx + c = 0 có ∆’ = 0. Điều nào sau đây là đúng?

Lời giải:

Giả sử x1, x2 là hai nghiệm của phương trình bậc hai ax2 + bx + c = 0 có ∆’ = 0

Chọn B

Bài 2 trang 56 Sách bài tập Toán 9 Tập 2: Tìm mối liên hệ giữa a, b, c để phương trình (b2 + c2)x2 – 2acx + a2 – b2 = 0 có nghiệm.

Lời giải:

Hoặc b ≠0 hoặc c ≠ 0 phương trình có :

Bài 3 trang 56 Sách bài tập Toán 9 Tập 2: Chứng tỏ rằng phương trình (x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = 0 luôn có nghiệm

Lời giải:

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1164

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống