Chủ đề 1: Máy tính và xã hội tri thức

Xem toàn bộ tài liệu Lớp 10 – Kết Nối Tri Thức: tại đây

Khởi động trang 20 Tin học 10:

Ta cũng có thể phân tích một số thành tổng các luỹ thừa của 2, chẳng hạn 13 có thể viết thành: 1 x 23 + 1 x 22 + 0 x 2+ 1 x 20 với các hệ số chỉ là 0 hoặc 1

Khi đó, có thể thể hiện 13 bởi 1101 được không? Em hãy cho biết việc thể hiện giá trị của một số bằng dãy bit có lợi gì.

Lời giải:

Số 13 được biểu diễn là 1101 bởi vì có thể biểu diễn mỗi số theo hệ nhị phân.

Lợi ích: Hệ nhị phân chỉ dùng hai chữ số 0 và 1, mọi số đều có thể biểu diễn được trong hệ nhị phân. Nhờ vậy có thể biểu diễn số trong máy tính. Hơn nữa, các thao tác tính toán trên các bit khá dễ dàng, máy tính có thể hiểu được.

Hoạt động 1 trang 20 Tin học 10:

Gợi ý: hãy lập danh sách các luỹ thừa của 2 như 16, 8, 4, 2, 1 và tách dần khỏi 19 cho đến hết.

Lời giải:

19 = 1 x 24 + 0 x 23 + 0 x 22 + 1 x 21 + 1 x 20

Câu hỏi 1 trang 21 Tin học 10:

a) 13           b) 155                   c) 76

Lời giải:

a)


13

=

1

×


2


3


+

1

×


2


2


+

0

×


2


1


+

1

×


2


0


⇒ 1101

b) 155 =


1

×


2


7


+

0

×


2


6


+

0

×


2


5


+

1

×


2


4


+

1

×


2


3


+

0

×


2


2


+

1

×


2


1


+

1

×


2


0


⇒ 10011011

c) 76 =


0

×


2


7


+

1

×


2


6


+

0

×


2


5


+

0

×


2


4


+

1

×


2


3


+

1

×


2


2


+

0

×


2


1


+

0

×


2


0


⇒ 01001100

Câu hỏi 2 trang 21 Tin học 10:

a)110011     b) 10011011          c) 1001110

Lời giải:

a)


1

×


2


5


+

1

×


2


4


+

0

×


2


3


+

0

×


2


2


+

1

×


2


1


+

1

×


2


0


=

51

b)


1

×


2


7


+

0

×


2


6


+

0

×


2


5


+

1

×


2


4


+

1

×


2


3


+

0

×


2


2


+

1

×


2


1


+

1

×


2


0


=

155

 

c)


1

×


2


6


+

0

×


2


5


+

0

×


2


4


+

1

×


2


3


+

1

×


2


2


+

1

×


2


1


+

0

×


2


0


=

78

 

Hoạt động 1 trang 22 Tin học 10:

a) 26 + 27 = 53                              b) 5 × 7 = 35

Lời giải:

a) ‭11010‬ + ‭11011‬ = ‭110101

‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

b) 0101 × 0111= 100011

Câu hỏi trang 23 Tin học 10:

a) 101101 + 11001                        b) 100111 × 1011

Lời giải:

a) 101101 + 11001 = 1000110

b) ‭100111 × 1011 = 110101101‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Luyện tập 1 trang 23 Tin học 10:

Hãy thực hiện các phép tính sau đây theo quy trình Hình 4.4.

a) 125 + 17                                    b) 250 + 175                       c) 75 + 112

Lời giải:

a) 01111101 + 00010001 = 10001110 ⇒ 142

b) 11111010 + 10101111 = 110101001 ⇒ 425

c) 1001011 + 1110000 = 10111011 ⇒ 187

Luyện tập 2 trang 23 Tin học 10:

Em hãy thực hiện phép tính sau đây theo quy trình Hình 4.4

a) 15 × 6                                       b) 11 × 9                    c) 125 × 4

Lời giải:

a) 1111 × 0110 = 1011010 ⇒ 90

b) 1011 × 1001 = 1100011 ⇒ 99

c) 1111101 × 100 = 111110100 ⇒ 500

Vận dụng 1 trang 23 Tin học 10:

Lời giải:

Đối với phần lẻ của số thập phân, số lẻ được nhân với 2. Phần nguyên của kết quả sẽ là bit nhị phân, phần lẻ của kết quả lại tiếp tục nhân 2 cho đến khi phần lẻ của kết quả bằng 0.

Ví dụ: Chuyển số 0,625 sang hệ nhị phân

0,625 × 2 = 1,25 = 1,25 (lấy số 1), phần lẻ 0,25

0,25 × 2 = 0,5 = 0,5 (lấy số 0), phần lẻ 0,5

0,5 × 2 = 1,0 = 1.0 (lấy số 1), phần lẻ 0,0

Kết thúc phép chuyển đổi, ta thu được kết quả là 101 (lấy từ phép nhân đầu tiên đến phép nhân cuối cùng)

Vận dụng 2 trang 23 Tin học 10:

a) Mã bù 2 được lập như thế nào?

b) Mã bù 2 được dùng để làm gì?

Lời giải:

a) Một số bù 2 có được do đảo tất cả các bit có trong số nhị phân (đổi 1 thành 0 và ngược lại) rồi thêm 1 vào kết quả vừa đạt được. Trong quá trình tính toán bằng tay cho nhanh người ta thường sử dụng cách sau: từ phải qua trái giữ 1 đầu tiên và các số còn lại bên trái số 1 lấy đảo lại.

Ví dụ: số nguyên −5 ở hệ thập phân được biểu diễn trong máy tính theo phương pháp bù 2 như sau (với mẫu 8 bit):

Bước 1: xác định số nguyên 5 ở hệ thập phân được biểu diễn trong máy tính là: 0000 0101.

Bước 2: đảo tất cả các bit nhận được ở bước 1. Kết quả sau khi đảo là: 1111 1010.

Bước 3: cộng thêm 1 vào kết quả thu được ở bước 2: kết quả sau khi cộng: 1111 1011.

Bước 4: vì là biểu diễn số âm nên bit bên trái cùng luôn giữ là 1.

Vậy với phương pháp bù 2, số −5 ở hệ thập phân được biểu diễn trong máy tính như sau: 1111 1011.

b) Mã bù 2 thường được sử dụng để biểu diễn các số âm trong máy tính. Trong phương pháp này, bit ngoài cùng bên trái (là bit ngoài cùng bên trái của byte) được sử dụng làm bit dấu với quy ước: nếu bit dấu là 0 thì số đó là số dương, còn nếu là 1 thì số là số âm. Ngoài bit dấu này, các bit còn lại được dùng để biểu diễn độ lớn của số.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 944

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống