Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Xem toàn bộ tài liệu Lớp 10 – Cánh Diều: tại đây

Câu hỏi khởi động trang 20 Toán lớp 10 Tập 1:

Số bánh nướng và số bánh dẻo doanh nghiệp dự định sản xuất cần thỏa mãn điều kiện ràng buộc gì để lượng đường sản xuất bánh không vượt quá lượng đường đã nhập về?

Lời giải:

Để tìm hiểu về câu hỏi này, chúng ta cùng theo dõi hoạt động 1 trang 20.

Hoạt động 1 trang 20 Toán lớp 10 Tập 1:

Lời giải:

Quan sát bài toán mở đầu, ta thấy số lượng đường nhập về và lượng đường cần để làm cho mỗi chiếc bánh chưa đưa về cùng đơn vị, do đó ta cần đổi đơn vị đo khối lượng. 

Đổi: 60 g = 0,06 kg; 50 g = 0,05 kg.

Làm một chiếc bánh nướng cần 0,06 kg đường, vậy làm x chiếc bánh nướng cần 0,06x (kg đường). 

Làm một chiếc bánh dẻo cần 0,05 kg đường, vậy làm y chiếc bánh dẻo cần 0,05y (kg đường). 

Tổng số đường để làm số bánh nướng và bánh dẻo mà công ti dự định sản xuất là: 

0,06x + 0,05y (kg đường)

Vì doanh nghiệp nhập về 500 kg đường, nên tổng số đường cần để làm các loại bánh theo dự định phải không quá 500 kg. 

Vậy điều kiện ràng buộc đối với x và y là: 0,06x + 0,05y ≤ 500. 

Luyện tập 1 trang 21 Toán lớp 10 Tập 1:

a) 5x + 3y < 20;

b) 3x –  



5


y


> 2.

Lời giải:

+ Bất phương trình bậc nhất hai ẩn x, y là bất phương trình có một trong các dạng sau:

ax + by < c; ax + by > c; ax + by ≤ c; ax +by ≥ c,

trong đó a, b, c là những số cho trước với a, b không đồng thời bằng 0, x và y là các ẩn.

Do đó trong hai bất phương trình đã cho, chỉ có bất phương trình a) 5x + 3y < 20 là bất phương trình bậc nhất hai ẩn.

 + Để chỉ ra nghiệm của bất phương trình bậc nhất hai ẩn trên, ta chỉ cần chọn cặp số (x0; y0) thỏa mãn 5x0 + 3y0 < 20.

Chẳng hạn, chọn x0 = 1, y0 = 1, ta có: 5 . 1 + 3 . 1 = 8 < 20

Vậy (1; 1) là một nghiệm của của bất phương trình bậc nhất hai ẩn 5x + 3y < 20.

Hoạt động 2 trang 21 Toán lớp 10 Tập 1:

a) x > 0 (1); 

b) y < 1 (2). 

Lời giải:

Để xác định điểm M(x; y) trong mặt phẳng tọa độ thỏa mãn điều kiện đã cho, ta làm như sau: 

a) Đường thẳng x = 0 chính là trục tung. 

Đường thẳng x = 0 chia mặt phẳng thành 2 nửa: nửa mặt phẳng bên trái và nửa mặt phẳng bên phải trục tung. 

Một điểm có hoành độ dương thì nằm ở nửa mặt phẳng bên phải trục tung và ngược lại. Vì thế, miền nghiệm của bất phương trình (1) là nửa mặt phẳng bên phải trục tung, được mô tả bằng nửa mặt phẳng không bị gạch ở Hình 1 (không kể trục tung).

b) Vẽ đường thẳng y = 1. 

Đường thẳng d: y = 1 chia mặt phẳng thành hai nửa: nửa mặt phẳng bên trên và nửa mặt phẳng bên dưới đường thẳng d (không kể đường thẳng d). 

Một điểm có tung độ nhỏ hơn 1 thì nằm ở nửa mặt phẳng bên dưới đường thẳng d và ngược lại. Vì thế, miền nghiệm của bất phương trình (2) là nửa mặt phẳng bên dưới đường thẳng d, được mô tả bằng nửa mặt phẳng không bị gạch ở Hình 2. 

Hoạt động 3 trang 22 Toán lớp 10 Tập 1:

a) Trong mặt phẳng tọa độ Oxy, vẽ đường thẳng d: 2x – y = 2 ⇔ y = 2x – 2. 

b) Xét điểm M(2; – 1). Chứng tỏ (2; – 1) là nghiệm của bất phương trình (3). 

c) Đường thẳng d chia mặt phẳng tọa độ thành hai nửa mặt phẳng. Gạch đi nửa mặt phẳng không chứa điểm M(2; – 1). 

Lời giải:

a) Đường thẳng d: y = 2x – 2

Cho x = 0 thì y = – 2

Cho y = 0 thì x = 1

Do đó, đường thẳng d đi qua hai điểm (0; – 2) và (1; 0). Ta vẽ đường thẳng d như sau: 

Luyện tập 2 trang 24 Toán lớp 10 Tập 1:

a) x – 2y < 4;

b) x + 3y ≥ 6. 

Lời giải:

a) x – 2y < 4 

+ Vẽ đường thẳng d: x – 2y = 4

Cho x = 0 thì y = – 2, cho y = 0 thì x = 4. Đường thẳng d đi qua 2 điểm (0; – 2) và (4; 0). 

+ Lấy điểm O(0; 0). Ta có: 0 – 0 = 0 < 4. 

Vậy miền nghiệm của bất phương trình x – 2y < 4 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) không kể đường thẳng d.

b) x + 3y ≥ 6

+ Vẽ đường thẳng d: x + 3y = 6

Cho x = 0 thì y = 2, cho y = 0 thì x = 6, do đó đường thẳng d đi qua hai điểm (0; 2) và (6; 0). 

+ Lấy điểm O(0; 0). Ta có: 0 + 3.0 = 0 < 6. 

Vậy miền nghiệm của bất phương trình x + 3y ≥ 6 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) kể cả đường thẳng d. 

Bài 1 trang 24 Toán lớp 10 Tập 1: Cặp số nào sau đây là nghiệm của bất phương trình 2x – 3y < 3?

a) (0; – 1); 

b) (2; 1); 

c) (3; 1). 

Lời giải:

Ta có: 2x – 3y < 3 (1).

a) Thay x = 0, y = – 1 vào bất phương trình (1) ta được: 2 . 0 – 3 . (– 1) < 3 

⇔ 3 < 3 (vô lí) 

Vậy cặp số (0; – 1) không phải là nghiệm của bất phương trình đã cho. 

b) Tương tự ta có: 2 . 2 – 3 . 1 = 4 – 3 = 1 < 3 (luôn đúng)

Vậy cặp số (2; 1) là một nghiệm của bất phương trình đã cho. 

c) Ta có: 2 . 3 – 3 . 1 = 6 – 3 = 3 < 3 (vô lí). 

Vậy cặp số (3; 1) không phải là nghiệm của bất phương trình đã cho.

Bài 2 trang 24 Toán lớp 10 Tập 1: Biểu diễn miền nghiệm của mỗi bất phương trình sau:

a) x + 2y < 3; 

b) 3x – 4y ≥ – 3; 

c) y ≥ – 2x + 4; 

d) y < 1 – 2x. 

Lời giải:

a) x + 2y < 3 

+ Vẽ đường thẳng d: x + 2y = 3.

+ Lấy điểm O(0; 0). Ta có: 0 + 2.0 = 0 < 3.

Vậy miền nghiệm của bất phương trình x + 2y < 3 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) không kể đường thẳng d. 

b) 3x – 4y ≥ – 3

+ Vẽ đường thẳng d: 3x – 4y = – 3. 

+ Lấy điểm O(0; 0). Ta có: 3 . 0 – 4 . 0 = 0 > – 3. 

Vậy miền nghiệm của bất phương trình 3x – 4y ≥ – 3 là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) kể cả đường thẳng d. 

c) y ≥ – 2x + 4 

⇔ 2x + y ≥ 4 

+ Vẽ đường thẳng d: 2x + y = 4. 

+ Lấy điểm O(0; 0). Ta có: 2 . 0 + 0 = 0 < 4. 

Vậy miền nghiệm của bất phương trình 2x + y ≥ 4 hay chính là y ≥ – 2x + 4 là nửa mặt phẳng không bị gạch ở hình trên không chứa điểm O(0; 0) kể cả đường thẳng d. 

d) y < 1 – 2x 

⇔ 2x + y < 1

+ Vẽ đường thẳng d: 2x + y = 1. 

+ Lấy O(0; 0). Ta có: 2 . 0 + 0 = 0 < 1. 

Vậy miền nghiệm của bất phương trình 2x + y < 1 hay chính là y < 1 – 2x là nửa mặt phẳng không bị gạch ở hình trên chứa điểm O(0; 0) không kể đường thẳng d. 

Bài 3 trang 24 Toán lớp 10 Tập 1: Phần không gạch (không kể d) ở mỗi Hình 7a, 7b, 7c là miền nghiệm của bất phương trình nào?

Lời giải:

a) Giả sử đường thẳng d: y = ax + b (1) (a ≠ 0)

Quan sát Hình 7a, ta thấy đường thẳng d đi qua hai điểm (0; – 2) và (2; 0).

Thay x = 0, y = – 2 vào (1) ta được: – 2 = b hay b = – 2

Thay x = 2, y = 0 vào (1) ta được: 0 = 2a + b

Suy ra 2a = – b = 2 ⇒ a = 1 (t/m).

Khi đó đường thẳng d: y = x – 2 ⇔ x – y = 2

Xét điểm O(0; 0), ta có: 0 – 0 = 0 < 2

Lại có trên Hình 7a điểm O(0; 0) thuộc phần gạch sọc.

Vậy phần không gạch (không kể d) là miền nghiệm của bất phương trình x – y > 2.

b) Giả sử đường thẳng d: y = ax + b (2) (a ≠ 0)

Quan sát Hình 7b, ta thấy đường thẳng d đi qua 2 điểm (0; 1) và (2; 0).

Thay x = 0, y = 1 vào (2), ta được: b = 1

Thay x = 2, y = 0 vào (2), ta được: 2a + b = 0

Suy ra 2a + 1 = 0 ⇔ a =  





1


2


(t/m)

Khi đó đường thẳng d: y =  





1


2


x

+ 1 ⇔ x + 2y = 2

Xét điểm O(0; 0). Ta có: 0 + 0 = 0 < 2.

Lại có trên Hình 7b điểm O(0; 0) thuộc phần gạch sọc.

Vậy phần không gạch sọc (không kể d) là miền nghiệm của bất phương trình x + 2y > 2.

c) Quan sát Hình 7c, ta thấy đường thẳng d đi qua gốc tọa độ và đi qua điểm M(1; 1).

Do đó phương trình đường thẳng d có dạng: y = ax (a ≠ 0)

Vì d đi qua M nên thay x = 1, y = 1 vào y = ax, ta được: a = 1 (t/m)

Do đó đường thẳng d: y = x ⇔ x – y = 0

Xét điểm (1; 0). Ta có: 1 – 0 = 1 > 0.

Lại có trên Hình 7c điểm (1; 0) nằm trên phần gạch sọc.

Vậy phần không gạch sọc (không kể d) là miền nghiệm của bất phương trình x – y < 0.

Bài 4 trang 24 Toán lớp 10 Tập 1: Một gian hàng trưng bày bàn và ghế rộng 60 m2. Diện tích để kê một chiếc ghế là 0,5 m2, một chiếc bàn là 1,2 m2. Gọi x là số chiếc ghế, y là số chiếc bàn được kê.

a) Viết bất phương trình bậc nhất hai ẩn x, y cho phần mặt sàn để kê bàn và ghế biết diện tích mặt sàn dành cho lưu thông tối thiểu là 12m2.

b) Chỉ ra ba nghiệm của bất phương trình trên.

Lời giải:

a) Điều kiện: 


x





,

y





Vì diện tích mặt sàn dành cho lưu thông tối thiểu là 12 m2, do đó diện tích phần mặt sàn để kê bàn và ghế tối đa là: 60 – 12 = 48 (m2).

Diện tích để kê một chiếc ghế là 0,5 m2, nên diện tích để kê x chiếc ghế là 0,5x (m2).

Diện tích để kê một chiếc bàn là 1,2 m2, nên diện tích để kê y chiếc bàn là 1,2y (m2).

Tổng diện tích cho phần mặt sàn để kê x chiếc ghế và y chiếc bàn là: 0,5x + 1,2y (m2).

Do đó, bất phương trình cần tìm là: 0,5x + 1,2y ≤ 48.

b) Cặp số (x0; y0) là nghiệm của bất phương trình 0,5x + 1,2y ≤ 48 nếu 0,5x0 + 1,2y0 ≤ 48. (chú ý x0 và y0 ­là các số tự nhiên, do đây là số chiếc bàn và ghế)

+ Chọn x0 = 2, y0 =  5, ta có: 0,5 . 2 + 1,2 . 5 = 1 + 6 = 7 < 48.

+ Chọn x0 = 4, y0 = 10, ta có: 0,5 . 4 + 1,2 . 10 = 2 + 12 = 14 < 48.

+ Chọn x0 = 6, y = 20, ta có: 0,5 . 6 + 1,2 . 20 = 3 + 24 = 27 < 48.

Vậy ba cặp số (2; 5), (4; 10), (6; 20) là ba nghiệm của bất phương trình 0,5x + 1,2y ≤ 48.

Chú ý: Bất phương trình bậc nhất hai ẩn có vô số nghiệm, nên có thể chọn cặp số tùy ý thỏa mãn.

Bài 5 trang 24 Toán lớp 10 Tập 1: Trong 1 lạng (100 g) thịt bò chứa khoảng 26 g protein, 1 lạng cá rô phi chứa khoảng 20 g protein. Trung bình trong một ngày, một người phụ nữ cần tối thiểu 46 g protein. (Nguồn: https://vinmec.com và https://thanhnien.vn) Gọi x, y lần lượt là số lạng thịt bò và số lạng cá rô phi mà một người phụ nữ nên ăn trong một ngày. Viết bất phương trình bậc nhất hai ẩn x, y để biểu diễn lượng protein cần thiết cho một người phụ nữ trong một ngày và chỉ ra ba nghiệm của bất phương trình đó.

Lời giải:

Trong 1 lạng thịt bò chứa khoảng 26 g protein nên trong x lạng thịt bò chứa khoảng 26x (g protein). 

Trong 1 lạng cá rô phi chứa khoảng 20 g protein nên trong y lạng cá rô phi chứa khoảng 20y (g protein). 

Tổng số lượng protein mà một người phụ nữ nên ăn trong một ngày là: 26x + 20y (g protein). 

Trung bình mỗi ngày, một người phụ nữ cần tối thiểu 46 g protein. 

Do đó, bất phương trình bậc nhất hai ẩn x, y để biểu diễn lượng protein cần thiết cho một người phụ nữ trong một ngày là: 26x + 20y ≥ 46. 

Cặp số (x0; y0) là nghiệm của bất phương trình 26x + 20y ≥ 46 nếu 26x0 + 20y0 ≥ 46. 

+ Chọn x0 = 1, y0 = 1, ta có: 26 . 1 + 20 . 1 = 46  

+ Chọn x0 = 2, y0 = 1, ta có: 26 . 2 + 20 . 1 = 72 > 46 

+ Chọn x0 = 1, y0 = 2, ta có: 26 . 1 + 20 . 2 = 66 > 46

Vậy ba cặp số (1; 1), (2; 1), (1; 2) là ba nghiệm của bất phương trình 26x + 20y ≥ 46. 

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1184

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống