Chương 2: Bất phương trình và hệ bất phương trình bậc nhất hai ẩn

Xem toàn bộ tài liệu Lớp 10 – Kết Nối Tri Thức: tại đây

Mở đầu trang 26 Toán 10 Tập 1:

Cửa hàng ước tính rằng tổng nhu cầu của thị trường sẽ không vượt quá 100 máy cả hai loại. Nếu là chủ cửa hàng thì em cần đầu tư kinh doanh mỗi loại bao nhiêu máy để lợi nhuận thu được là lớn nhất?

Lời giải:

Sau bài học này ta sẽ giải được bài toán như sau:

Gọi x, y lần lượt là số máy điều hòa hai chiều và số máy điều hòa một chiều mà chủ cửa hàng đầu tư (x,y ≥ 0)

Vì tổng nhu cầu của thị trường sẽ không vượt quá 100 máy cả hai loại nên ta có bất phương trình: x + y ≤ 100

Số tiền đầu tư là: 20x + 10y (triệu đồng)

Vì số vốn ban đầu không vượt quá 1,2 tỉ đồng nên ta có bất phương trình:

20x + 10y ≤ 1 200 

Lợi nhuận dự kiến chủ cửa hàng thu được là: F(x;y) = 3,5x + 2y (triệu đồng)

Bài toán trở thành tìm giá trị x, y thỏa mãn hệ bất phương trình:  






x





0






y





0






x


+


y





100






20


x


+


10


y





1200





(1) để F(x;y) = 3,5x + 2y là lớn nhất.

Biểu diễn miền nghiệm của hệ bất phương trình (1) trên mặt phẳng tọa độ bằng cách biểu diễn từng miền nghiệm của từng bất phương trình trong hệ phương trình (1), rồi lấy giao của các miền nghiệm ta được miền nghiệm của hệ BPT (1) là miền tứ giác OMNP với tọa độ các điểm O(0; 0), M(0; 100), N(20; 80), P(60; 0).

Tại O(0;0) giá trị biểu thức F(x;y) = 3,5x + 2y là: 3,5.0 + 2.0 = 0;

Tại M(0;100) giá trị biểu thức 3,5x + 2y là: 3,5.0 + 2.100 = 200;

Tại N(20;80) giá trị biểu thức 3,5x + 2y là: 3,5.20 + 2.80 = 230;

Tại P(60;0) giá trị biểu thức 3,5x + 2y là: 3,5.60 + 2.0 = 210;

Suy ra tại x = 20, y = 80 thì giá trị biểu thức 3,5x + 2y là lớn nhất.

Vậy nếu là chủ cửa hàng thì em cần đầu tư kinh doanh 20 máy điều hòa hai chiều, 80 máy điều hòa một chiều để lợi nhuận thu được là lớn nhất.

HĐ1 trang 26 Toán 10 Tập 1:

a) Do nhu cầu của thị trường không quá 100 máy nên x và y cần thỏa mãn điều kiện gì?

b) Vì số vốn mà chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên x và y phải thỏa mãn điều kiện gì?

c) Tính số tiền lãi mà chủ cửa hàng dự kiến thu được theo x và y.

Lời giải:

Do x và y là số máy điều hòa mà cửa hàng cần nhập nên x ≥ 0, y ≥ 0.

Số tiền vốn mà chủ cửa hàng phải bỏ ra để nhập hai loại máy điều hòa theo x và y là:

20x + 10y (triệu đồng)

a) Do nhu cầu của thị trường không quá 100 máy nên x + y ≤ 100.

b) Vì số vốn mà chủ cửa hàng có thể đầu tư không vượt quá 1,2 tỉ đồng nên 20x + 10y ≤ 1 200 .

c) Số tiền lãi mà cửa hàng dự kiến thu được là: 3,5x + 2y (triệu đồng).

Luyện tập 1 trang 27 Toán 10 Tập 1:

Lời giải:

Từ HĐ1 ta có hệ bất phương trình:






x





0






y





0






x


+


y





100






20


x


+


10


y





1200





Ta có x = 30 > 0, y = 50 > 0 thỏa mãn

30 + 50 = 80 ≤ 100;

20.30 + 10.50 = 1 100 ≤ 1 200

Do đó x = 30, y = 50 là một nghiệm của hệ bất phương trình đã cho.

HĐ2 trang 27 Toán 10 Tập 1:

a) Xác định các miền nghiệm D1, D2, D3 của các bất phương trình tương ứng x ≥ 0, y ≥ 0 và x + y ≤ 150.

b) Miền tam giác OAB (H.2.5) có phải là giao của các miền nghiệm D1, D2, D3 hay không?

c) Lấy một điểm trong tam giác OAB (chẳng hạn điểm (1;2)) hoặc một điểm trên cạnh nào đó của tam giác OAB (chẳng hạn điểm (1;149)) và kiểm tra xem tọa độ của các điểm đó có phải là nghiệm của hệ bất phương trình sau hay không:






x





0






y





0






x


+


y





150





Lời giải:

a) 

+ Trục Oy có phương trình x = 0 và điểm (1; 0) thỏa mãn 1 > 0, do đó miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) (tính cả bờ Oy).

+ Trục Ox có phương trình y = 0 và điểm (0; 1) thỏa mãn 1 > 0, do đó miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1) (tính cả bờ Ox).

+ Xác định miền nghiệm D3 của bất phương trình x + y ≤ 150.

– Vẽ đường thẳng d: x + y – 150 = 0.

– Vì 0 + 0 = 0 < 150 nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 150 

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 150 là nửa mặt phẳng bờ d chứa gốc tọa độ (tính cả bờ d).

b) Giao điểm của ba miền nghiệm D1, D2, D3 là miền tam giác OAB với O(0;0), A(150;0) và B(0;150)

Do đó miền tam giác OAB (H.2.5) có là giao của các miền nghiệm D1, D2, D3.

c) Điểm (1;2) nằm trong tam giác OAB thỏa mãn x = 1 > 0, y = 2 > 0 và 1 + 2 = 3 < 150 nên cặp số (x; y) = (1;2) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.

Điểm (1;149) nằm trên một cạnh của tam giác OAB thỏa mãn x = 1 > 0, y = 149 > 0 và 1 + 149 = 150 ≤ 150 nên cặp số (x; y) = (1;149) thỏa mãn cả ba bất phương trình của hệ bất phương trình đã cho. Do đó nó là một nghiệm của hệ bất phương trình đã cho.

Luyện tập 2 trang 28 Toán 10 Tập 1:






x





0






y


>


0






x


+


y





100






2


x


+


y


<


120





.

Lời giải:

+ Trục Oy có phương trình x = 0 và điểm (1; 0) thỏa mãn 1 > 0, do đó miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1; 0) (tính cả trục Oy).

+ Trục Ox có phương trình y = 0 và điểm (0; 1) thỏa mãn 1 > 0, do đó miền nghiệm D2 của bất phương trình y > 0 là nửa mặt phẳng bờ Ox chứa điểm (0; 1) (không tính trục Ox).

+ Miền nghiệm D3 của bất phương trình x + y ≤ 100:

– Vẽ đường thẳng d: x + y – 100 = 0.

– Vì 0 + 0 = 0 < 100 nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình x + y ≤ 100

Do đó miền nghiệm Dcủa bất phương trình x + y ≤ 100 là nửa mặt phẳng bờ d chứa gốc tọa độ (tính cả bờ d).

+ Miền nghiệm D4 của bất phương trình 2x + y < 120:

– Vẽ đường thẳng d’: 2x + y – 120 = 0.

– Vì 2.0 + 0 = 0 < 120 nên tọa độ điểm O(0; 0) thỏa mãn bất phương trình 2x + y < 120

Do đó miền nghiệm Dcủa bất phương trình 2x + y < 120 là nửa mặt phẳng bờ d’ chứa gốc tọa độ (không kể bờ d’).

Vậy miền nghiệm của hệ bất phương trình là miền tứ giác OACB với O(0; 0), A(60; 0), C(20; 80), B(0; 100) (miền không bị gạch trong hình dưới).

HĐ3 trang 28 Toán 10 Tập 1:

a) Tính giá trị của biểu thức F(x; y) tại mỗi đỉnh O, A và B.

b) Nêu nhận xét về dấu của hoành độ x và tung độ y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị nhỏ nhất của F(x; y) trên miền tam giác OAB.

c) Nêu nhận xét về tổng x + y của điểm (x; y) nằm trong miền tam giác OAB. Từ đó suy ra giá trị lớn nhất của F(x; y) trên miền tam giác OAB.

Lời giải:

a) Tại O(0;0):

Thay x = 0, y = 0 vào biểu thức F(x;y) = 2x + 3y, ta được:

F(0;0) = 2.0 + 3.0 = 0.

Tại A(150;0):

Thay x = 150, y = 0 vào biểu thức F(x;y) = 2x + 3y, ta được:

F(150;0) = 2.150 + 3.0 = 300.

Tại B(0;150):

Thay x = 0, y = 150 vào biểu thức F(x;y) = 2x + 3y, ta được:

F(0;150) = 2.0 + 3.150 = 450.

b) Các điểm nằm trong miền tam giác OAB, có hoành độ x ≥ 0 và tung độ y ≥ 0.

⇒ F(x;y) = 2x + 3y ≥ 2.0 + 3.0 = 0

Do đó giá trị nhỏ nhất của F(x;y) = 0 tại O(0;0).

c) Các điểm nằm trong miền tam giác OAB có hoành độ x và tung độ y thỏa mãn: 0 ≤ x + y ≤ 150

⇔ 0 ≤ 2x + 2y ≤ 300

⇔ 0 ≤ 2x + 2y + y ≤ 300 + y

Mà 0 ≤ y ≤ 150 nên 300 + y ≤ 450

Do đó 0 ≤ 2x + 2y + y ≤ 450

⇔ 0 ≤ 2x + 3y ≤ 450 hay ⇔ 0 ≤ F(x;y) ≤ 450

Vậy giá trị lớn nhất của hàm F(x;y) = 450 tại điểm B(0;150).

Vận dụng trang 30 Toán 10 Tập 1:

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (triệu đồng) là lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B. Hãy biểu diễn F theo x và y.

c) Tìm số lượng máy tính mỗi loại cửa hàng cần nhập về trong tháng đó để lợi nhuận thu được là lớn nhất.

Lời giải:

a) Số máy tính loại A cửa hàng cần nhập trong một tháng là x (máy), số máy tính loại B cửa hàng cần nhập trong một tháng là y (máy) (x,y ≥ 0 và x, y ∈ ℤ).

Do tổng nhu cầu hàng tháng sẽ không vượt quá 250 máy: x + y ≤ 250

Tổng số vốn cửa hàng cần nhập hai loại A và B: 10x + 20y (triệu đồng)

Vì số vốn ban đầu không vượt quá 4 tỉ đồng nên ta có: 10x + 20y  ≤ 4 000 ⇔ x + 2y ≤ 400.

Khi đó ta có hệ bất phương trình: 






x





0






y





0






x


+


y





250






x


+


2


y





4





00





Xác định miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

* Xác định miền nghiệm của hệ bất phương trình trên:

+ Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (0;1) (tính cả trục Oy).

+ Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1) (tính cả trục Ox).

Miền nghiệm D3 của bất phương trình x + y ≤ 250 và gach bỏ miền còn lại

– Vẽ đường thẳng d: x + y = 250.

– Vì 0 + 0 = 0 < 250 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + y ≤ 250

Do đó miền nghiệm D3 của bất phương trình x + y ≤ 250 là nửa mặt phẳng bờ d chứa gốc tọa độ (tính cả bờ d).

Xác định miền nghiệm D4 của bất phương trình x + 2y ≤ 400

– Vẽ đường thẳng d’: x + 2y = 400.

– Vì 0 + 2.0 = 0 < 400 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình x + 2y < 400

Do đó miền nghiệm D4 của bất phương trình x + 2y < 400 là nửa mặt phẳng bờ d’ chứa gốc tọa độ (tính cả bờ d’).

Miền nghiệm của hệ bất phương trình là tứ giác OACB với O(0;0), A(250;0), C(100;150), B(0; 200)

b) Lợi nhuận mà cửa hàng thu được trong tháng đó khi bán x máy tính loại A và y máy tính loại B là: F(x;y) = 2,5x + 4y (triệu đồng).

Vậy F(x;y) = 2,5x + 4y.

c) Bài toán chuyển về tìm giá trị lớn nhất của F(x;y) với (x;y) thuộc miền nghiệm của hệ bất phương trình






x





0






y





0






x


+


y





250






10


x


+


20


y





4


  


000





.

Tại O(0;0): F(0;0) = 2,5.0 + 4.0 = 0;

Tại A(250;0): F(250;0) = 2,5.250 + 4.0 = 625;

Tại C(100;150): F(100;150) = 2,5.100 + 4.150 = 850;

Tại B(0;200): F(0;200) = 2,5.0 + 4.200 = 800.

Do đó F(x;y) lớn nhất bằng 850 với x = 100 và y = 150.

Vậy cửa hàng cần nhập 100 máy loại A, 150 máy loại B để cửa hàng thu được lợi nhuận lớn nhất là 850 triệu đồng.

Bài 2.4 trang 30 Toán 10 Tập 1: Hệ bất phương trình nào sau đây là hệ bất phương trình bậc nhất hai ẩn?

a) 






x


<


0






y





0





;

b) 






x


+



y


2



<


0






y





x


>


1





;

c) 






x


+


y


+


z


<


0






y


<


0





;

d) 









2


x


+


y


<



3


2








4


2



x


+


3


y


<


1





.

Lời giải:

Hệ bất phương trình bậc nhất hai ẩn là hệ gồm hai hay nhiều bất phương trình bậc nhất hai ẩn.

Ta thấy

+ Hệ






x


<


0






y





0





 gồm 2 bất phương trình x < 0 và y ≥ 0, đây đều là các bất phương trình bậc nhất do x < 0 1x + 0y < 0 và y ≥ 0 0x + 1y ≥ 0. Do đó hệ bất phương trình a) là hệ bất phương trình bậc nhất hai ẩn.

+ Hệ






x


+



y


2



<


0






y





x


>


1





 không phải hệ bất phương trình bậc nhất hai ẩn do bất phương trình thứ nhất của hệ có ẩn y có bậc là 2. Do đó hệ bất phương trình b) không là hệ bất phương trình bậc nhất hai ẩn.

+ Hệ 






x


+


y


+


z


<


0






y


<


0





không phải hệ bất phương trình bậc nhất hai ẩn do bất phương trình thứ nhất của hệ có 3 ẩn x, y, z. Do đó hệ bất phương trình c) không là hệ bất phương trình bậc nhất hai ẩn.

+ Hệ 









2


x


+


y


<



3


2








4


2



x


+


3


y


<


1





gồm 2 bất phương trình – 2x + y < 32 – 2x + y < 9 và 42x + 3y < 1 16x + 3y < 1, đều là các hệ bất phương trình bậc nhất hai ẩn. Do đó hệ bất phương trình d) là hệ bất phương trình bậc nhất hai ẩn.

Vậy các hệ bất phương trình a) và d) là hệ bất phương trình bậc nhất hai ẩn.

Bài 2.5 trang 30 Toán 10 Tập 1: Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau trên mặt phẳng tọa độ:

a) 






y





x


<





1






x


>


0






y


<


0





;

b) 






x





0






y





0






2


x


+


y





4





;

c) 






x





0






x


+


y


>


5






x





y


<


0





.

Lời giải:

a) Xác định miền nghiệm D1 của bất phương trình y – x < – 1 và gạch bỏ miền nghiệm còn lại.

– Vẽ đường thẳng d: y – x = – 1 .

– Vì 0 – 0 = 0 > -1 nên tọa độ điểm O(0;0) không thỏa mãn bất phương trình y – x < -1.

Do đó miền nghiệm D1 của bất phương trình y – x < – 1 là nửa mặt phẳng bờ d không chứa gốc tọa độ và không chứa biên.

Miền nghiệm D2 của bất phương trình x > 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0) và không chứa biên.

Miền nghiệm D3 của bất phương trình y < 0 là nửa mặt phẳng bờ Ox chứa điểm (0;-1) và không chứa biên.

Vậy miền nghiệm của hệ bất phương trình đã cho là miền không bị gạch.

b)

Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

Miền nghiệm D2 của bất phương trình y ≥ 0 là nửa mặt phẳng bờ Ox chứa điểm (0;1).

Xác định miền nghiệm D3 của bất phương trình 2x + y ≤ 4 và gạch bỏ miền nghiệm còn lại.

– Vẽ đường thẳng d’: 2x + y = 4.

– Vì 2.0 + 0 = 0 < 4 nên tọa độ điểm O(0;0) thỏa mãn bất phương trình 2x + y ≤ 4.

Do đó miền nghiệm D3 của bất phương trình 2x + y ≤ 4 là nửa mặt phẳng bờ d’ chứa gốc tọa độ.

Vậy miền nghiệm của hệ là miền tam giác OAB (miền không bị gạch trong hình dưới).

c) 






x





0






x


+


y


>


5






x





y


<


0





.

+ Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy chứa điểm (1;0).

+ Xác định miền nghiệm D2 của bất phương trình x + y > 5 và gạch bỏ miền nghiệm còn lại.

– Vẽ đường thẳng d1: x + y = 5.

– Vì 0 + 0 = 0 < 5 nên tọa độ điểm O(0;0) không thỏa mãn bất phương trình x + y > 5.

Do đó miền nghiệm D2 của bất phương trình x + y > 5 là nửa mặt phẳng bờ d1 không chứa gốc tọa độ và không chứa đường thẳng d1.

+ Xác định miền nghiệm D3 của bất phương trình x – y < 0 và gạch bỏ miền nghiệm còn lại.

– Vẽ đường thẳng d2: x – y = 0.

– Vì 1 – (-1) = 2 > 0  nên tọa độ điểm M(1;-1) không thỏa mãn bất phương trình x – y < 0.

Do đó miền nghiệm D3 của bất phương trình x – y < 0 là nửa mặt phẳng bờ d2 không chứa điểm M(1;-1) và không chứa đường thẳng d2.

Khi đó miền không bị gạch và không chứa biên chính là giao các miền nghiệm của các bất phương trình trong hệ. Vậy miền nghiệm của hệ là miền không bị gạch trong hình dưới đây (không tính đường thẳng d1 và d2).

Bài 2.6 trang 30 Toán 10 Tập 1: Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipid trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipid. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipid. Biết rằng gia đình này chỉ mua nhiều nhất là 1,6 kg thịt bò và 1,1 kg thịt lợn; giá tiền 1 kg thịt bò là 250 nghìn đồng; 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn.

a) Viết các bất phương trình biểu thị các điều kiện của bài toán thành một hệ bất phương trình rồi xác định miền nghiệm của hệ đó.

b) Gọi F (nghìn đồng) là số tiền phải trả cho x kilôgam thịt bò và y kilôgam thịt lợn. Hãy biểu diễn F theo x và y.

c) Tìm số kilôgam thịt mỗi loại mà gia đình cần mua để chi phí là ít nhất.

Lời giải:

a) Vì gia đình này chỉ mua nhiều nhất là 1,6kg thịt bò và 1,1kg thịt lợn nên 0 ≤ x ≤ 1,6; 0 ≤ y ≤ 1,1

Trong x kilôgam thịt bò và y kilôgam thịt lợn chứa số đơn vị protein là: 800x + 600y (đơn vị)

Do số đơn vị protein cần ít nhất là 900 đơn vị nên ta có: 800x + 600y ≥ 900 hay 8x + 6y ≥ 9

Trong x kilôgam thịt bò và y kilôgam thịt lợn chứa số đơn vị lipid là: 200x + 400y (đơn vị)

Do số đơn vị lipid cần ít nhất là 400 đơn vị nên ta có: 200x + 400y ≥ 400 hay x + 2y ≥ 2

Khi đó ta có hệ bất phương trình: 






0





x





1


,


6






0





y





1


,


1






8


x


+


6


y





9






x


+


2


y





2





Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD với tọa độ các đỉnh là A(0,3; 1,1), B(0,6; 0,7), C(1,6; 0,2), D(1,6; 1,1).

b) Số tiền gia đình đó phải trả để mua x kilôgam thịt bò và y kilôgam thịt lợn là:

F(x;y) = 250x + 160y (nghìn đồng)

Vậy F(x;y) = 250x +  160y

c) Ta cần tìm giá trị nhỏ nhất của F(x; y) khi (x; y) thỏa mãn hệ bất phương trình ở câu a.

Người ta đã chứng minh được để số tiền mua là ít nhất thì (x; y) sẽ là tọa độ của một trong bốn đỉnh của tứ giác ABCD.

Tính giá trị của F tại các đỉnh của tứ giác:

F(0,3; 1,1) = 250 . 0,3 + 160 . 1,1 = 251;

F(0,6; 0,7) = 250 . 0,6 + 160 . 0,7 = 262;

F(1,6; 0,2) = 250 . 1,6 + 160 . 0,2 = 432;

F(1,6; 1,1) = 250 . 1,6 + 160 . 1,1 = 576.

Suy ra giá trị nhỏ nhất cần tìm là F(0,3; 1,1) = 251.

Vậy để chi phí là ít nhất thì gia đình cần mua 0,3 kilôgam thịt bò và 1,1 kilôgam thịt lợn.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 899

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống