Xem toàn bộ tài liệu Lớp 10: tại đây
- Giải Sách Bài Tập Toán Lớp 10
- Sách Giáo Viên Đại Số Lớp 10
- Sách giáo khoa đại số 10
- Sách giáo khoa hình học 10
- Sách Giáo Viên Hình Học Lớp 10
- Sách giáo khoa đại số 10 nâng cao
- Sách Giáo Viên Đại Số Lớp 10 Nâng Cao
- Giải Toán Lớp 10 Nâng Cao
- Sách giáo khoa hình học 10 nâng cao
- Sách Giáo Viên Hình Học Lớp 10 Nâng Cao
- Sách Bài Tập Đại Số Lớp 10
- Sách Bài Tập Hình Học Lớp 10
- Sách Bài Tập Đại Số Lớp 10 Nâng Cao
- Sách Bài Tập Hình Học Lớp 10 Nâng Cao
Sách giải toán 10 Bài 1: Hàm số giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 10 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 32: Hãy nêu một ví dụ cụ thể về hàm số.
Lời giải
Sự phụ thuộc về quãng đường đi được của 1 xe khách với vận tốc và thời gian.
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 33: Hãy chỉ ra các giá trị của hàm số trên tại x = 2001; 2004; 1999
Lời giải
x = 2001 ⇒ y = 375
x = 2004 ⇒ y = 564
x = 1999 ⇒ y = 339
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 33: Hãy chỉ ra các giá trị của mỗi hàm số trên tại các giá trị x ∈ D
D = { 1995; 1996; 1997; 1998; 1999; 2000; 2001}
Lời giải
Hàm số: Tổng số công trình tham dự giải thưởng
x | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
y | 39 | 43 | 56 | 78 | 108 | 116 | 141 |
Hàm số: Tổng số công trình đạt giải thưởng
x | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 |
y | 10 | 17 | 23 | 28 | 29 | 35 | 43 |
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 33: Hãy kể các hàm số đã học ở Trung học cơ sở
Lời giải
Các hàm số đã học là; hàm số bậc nhất y = ax + b; hàm số y = ax2
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 34: Tìm tập xác định của các hàm số sau
Lời giải
a) Biểu thức g(x) = 3/(x + 2) xác định khi x + 2 ≠ 0 ⇔ x ≠ -2
TXĐ của hàm số là D = R\{-2}
TXĐ của hàm số là D = [-1;1]
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 34: Tính giá trị của hàm số ở chú ý trên tại x = -2 và x = 5.
Lời giải
x = -2 ⇒ y = -(-2)2 = -4
x = 5 ⇒ y = 2.5 + 1 = 11
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 35: Dựa vào đồ thị của hai hàm số đã cho trong hình 14
y = f(x) = x + 1 và y = g(x) = 1/2 x2
Hãy:
a) Tính f(-2), f(-1), f(0), f(2), g(-1), g(-2), g(0);
b) Tìm x, sao cho f(x) = 2;
Tìm x, sao cho g(x) = 2;
Lời giải
a) f(-2) = -1; f(-1) = 0; f(0) = 1; f(2) = 3
g(-1) = 0,5; g(-2) = 2; g(0) = 0
b) f(x) = 2 ⇒ x = 1
g(x) = 2 ⇒ x = 2 hoặc x = -2
Trả lời câu hỏi Toán 10 Đại số Bài 1 trang 38: Xét tính chẵn lẻ của các hàm số
a)y = 3x2 – 2; b) y = 1/x; c) y = √x
Lời giải
a) y = f(x) = 3x2 – 2
TXĐ:D = R ⇒ x ∈ D thì-x ∈ D
Ta có: f(-x) = 3(-x)2 – 2 = 3x2 – 2 = f(x)
Vậy hàm số y = f(x) = 3x2 – 2 là hàm số chẵn
b) y = f(x) = 1/x
TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D
f(-x) = 1/(-x) = -1/x = -f(x)
Vậy y = f(x) = 1/x là hàm số lẻ.
c) y = √x
TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D
Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.
Bài 1 (trang 38 SGK Đại số 10): Tìm tập xác định của hàm số:
Lời giải:
a)
Vậy tập xác định của hàm
b)
Giải phương trình x2 + 2x – 3 = 0 ⇔ (x-1)(x+3) = 0 ⇔
Vậy tập xác định của hàm số
c)
Vậy tập xác định của hàm số
Bài 2 (trang 38 SGK Đại số 10): Cho hàm số
Tính giá trị của hàm số đó tại x = 3; x = -1; x = 2.
Lời giải:
– Ta có : x = 3 > 2 nên f(3) = 3 + 1 = 4.
– Ta có : x = -1 < 2 nên f(–1) = (-1)2 – 2 = –1.
– Ta có : x = 2 nên f(2) = 2 + 1 = 3.
Bài 3 (trang 39 SGK Đại số 10): Cho hàm số y = 3x2 – 2x + 1. Các điểm sau có thuộc đồ thị của hàm số không ?
a) M(-1 ; 6)
b) N(1 ; 1)
c) P(0 ; 1)
Lời giải:
Tập xác định của hàm số y = f(x) = 3x2 – 2x + 1 là D = R
a) Tại x = –1 thì y = 3.( –1)2 – 2. (–1) + 1 = 3 + 2 + 1 = 6.
Vậy điểm M(–1; 6) thuộc đồ thị hàm số y = 3x2 – 2x + 1.
b) Tại x = 1 thì y = 3.12 – 2.1 + 1 = 3 – 2 + 1 = 2 ≠ 1.
Vậy N(1; 1) không thuộc đồ thị hàm số.
c) Tại x = 0 thì y = 3.02 – 2.0 + 1 = 1.
Vậy điểm P(0 ; 1) thuộc đồ thị hàm số.
Bài 4 (trang 39 SGK Đại số 10): Xét tính chẵn lẻ của các hàm số sau:
a) y = |x|;
b) y = (x + 2)2;
c) y = x3 + x;
d) y = x2 + x + 1.
Lời giải:
a) Đặt y = f(x) = |x|.
+ Tập xác định D = R nên với ∀ x ∈ D thì –x ∈ D.
+ f(–x) = |–x| = |x| = f(x).
Vậy hàm số y = |x| là hàm số chẵn.
b) Đặt y = f(x) = (x + 2)2.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ (x + 2)2 = f(x)
+ f(–x) = (–x + 2)2 = (x – 2)2 ≠ – (x + 2)2 = –f(x).
Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.
c) Đặt y = f(x) = x3 + x.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)3 + (–x) = –x3 – x = – (x3 + x) = –f(x)
Vậy y = x3 + x là một hàm số lẻ.
d) Đặt y = f(x) = x2 + x + 1.
+ TXĐ: D = R nên với ∀x ∈ D thì –x ∈ D.
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ x2 + x + 1 = f(x)
+ f(–x) = (–x)2 + (–x) + 1 = x2 – x + 1 ≠ –(x2 + x + 1) = –f(x)
Vậy hàm số y = x2 + x + 1 không chẵn, không lẻ.