Xem toàn bộ tài liệu Lớp 10: tại đây
- Giải Sách Bài Tập Toán Lớp 10
- Sách Giáo Viên Đại Số Lớp 10
- Sách giáo khoa đại số 10
- Sách giáo khoa hình học 10
- Sách Giáo Viên Hình Học Lớp 10
- Sách giáo khoa đại số 10 nâng cao
- Sách Giáo Viên Đại Số Lớp 10 Nâng Cao
- Giải Toán Lớp 10 Nâng Cao
- Sách giáo khoa hình học 10 nâng cao
- Sách Giáo Viên Hình Học Lớp 10 Nâng Cao
- Sách Bài Tập Đại Số Lớp 10
- Sách Bài Tập Hình Học Lớp 10
- Sách Bài Tập Đại Số Lớp 10 Nâng Cao
- Sách Bài Tập Hình Học Lớp 10 Nâng Cao
Sách giải toán 10 Bài 2: Phương trình đường tròn giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 10 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 10 Hình học Bài 2 trang 82: Cho hai điểm A(3; -4) và B(-3; 4).
Viết phương trình đường tròn (C) nhận AB là đường kính.
Lời giải
Gọi I là đường tròn nhận AB là đường kính
⇒ I là trung điểm của AB ⇒ I (0; 0)
⇒ R = AB/2 = 5
Phương trình đường tròn (C) nhận AB là đường kính là:
x2 + y2 = 25
Trả lời câu hỏi Toán 10 Hình học Bài 2 trang 82: Hãy cho biết phương trình nào trong các phương trình sau đây là phương trình đường tròn:
2x2 + y2 – 8x + 2y – 1 = 0;
x2 + y2 + 2x – 4y – 4 = 0;
x2 + y2 – 2x – 6y + 20 = 0;
x2 + y2 + 6x + 2y + 10 = 0.
Lời giải
+ 2x2 + y2 – 8x + 2y – 1 = 0 không phải phương trình đường tròn vì hệ số của x2 khác hệ số của y2.
+ Phương trình x2 + y2 + 2x – 4y – 4 = 0 có :
a = –1; b = 2; c = –4 ⇒ a2 + b2 – c = 9 > 0
⇒ phương trình trên là phương trình đường tròn.
+ Phương trình x2 + y2 – 2x – 6y + 20 = 0 có :
a = 1; b = 3; c = 20 ⇒ a2 + b2 – c = –10 < 0
⇒ phương trình trên không là phương trình đường tròn.
+ Phương trình x2 + y2 + 6x + 2y + 10 = 0 có :
a = –3; b = –1; c = 10 ⇒ a2 + b2 – c = 0 = 0
⇒ phương trình trên không là phương trình đường tròn.
Bài 1 (trang 83 SGK Hình học 10): Tìm tâm và bán kính của các đường tròn sau:
a, x2 + y2– 2x – 2y – 2 = 0
b, 16x2 + 16y2 + 16x – 8y -11 = 0
c, x2 + y2 – 4x + 6y – 3 = 0
Lời giải
Cách 1 : Xác định các hệ số a, b, c.
a) x2 + y2 – 2x – 2y – 2 = 0 có hệ số a = 1 ; b = 1 ; c = –2
⇒ tâm I (1; 1) và bán kính
b) 16x2 + 16y2 + 16x – 8y –11 = 0
⇒ Đường tròn có tâm
c) x2 + y2 – 4x + 6y – 3 = 0
⇔ x2 + y2 – 2.2x – 2.(-3).x – 3 = 0
có hệ số a = 2, b = -3,c = -3
⇒ Đường tròn có tâm I(2 ; –3), bán kính
Cách 2 : Đưa về phương trình chính tắc :
a) x2 + y2 – 2x – 2y – 2 = 0
⇔ (x2 – 2x + 1) + (y2 – 2y +1) = 4
⇔(x-1)2 + (y-1)2 = 4
Vậy đường tròn có tâm I(1 ; 1) và bán kính R = 2.
b) 16x2 + 16y2 + 16x – 8y – 11 = 0
Vậy đường tròn có tâm
c) x2 + y2 – 4x + 6y -3 = 0
⇔ (x2 – 4x + 4) + (y2 + 6y + 9) = 4 + 9 + 3
⇔ (x – 2)2 + (y + 3)2 = 16
Vậy đường tròn có tâm I( 2 ; –3) và bán kính R = 4.
Bài 2 (trang 83 SGK Hình học 10): Lập phương trình đường tròn (C) trong các trường hợp sau:
a, (C) có tâm I(-2; 3) và đi qua M(2; -3);
b, (C) có tâm I(-1; 2) và tiếp cúc với đường thẳng x – 2y +7 =0
c, (C) có đường kính AB với A = (1; 1) và B = (7; 5).
Lời giải
a) (C) có tâm I và đi qua M nên bán kính R = IM
Vậy đường tròn (C) : (x + 2)2 + (y – 3)2 = 52.
b) (C) tiếp xúc với (Δ) : x – 2y + 7 = 0
⇒ d(I; Δ) = R
Vậy đường tròn (C) :
c) (C) có đường kính AB nên (C) có :
+ tâm I là trung điểm của AB
Vậy đường tròn (C) : (x – 4)2 + (y – 3)2 = 13.
Bài 3 (trang 84 SGK Hình học 10): Lập phương trình đường tròn đi qua ba điểm:
a, A(1; 2), B(5; 2), C(1; -3)
b, M(-2; 4), N(5; 5), P(6; -2)
Lời giải
Gọi phương trình đường tròn (C) là: x2 + y2 – 2ax – 2by + c = 0.
a) A(1; 2) ∈ (C) ⇔ 12 + 22 – 2.a.1 – 2.b.2 + c = 0 ⇔ 2a + 4b – c = 5 (1)
B(5; 2) ∈ (C) ⇔ 52 + 22 – 2.5.x – 2.2.y + c = 0 ⇔ 10x + 4y – c = 29 (2)
C(1; –3) ∈ (C) ⇔ 12 + (–3)2 – 2.a.1 – 2.b.(–3) + c = 0 ⇔ 2a – 6b – c = 10 (3)
Từ (1), (2) và (3) ta có hệ phương trình :
Giải hệ phương trình trên ta được nghiệm a = 3, b = –1/2, c = –1.
Vậy đường tròn đi qua ba điểm A, B, C là : x2 + y2 – 6x + y – 1 = 0.
b)
M(–2 ; 4) ∈ (C) ⇔ (–2)2 + 42 – 2.a.(–2) – 2.b.4 + c = 0 ⇔ 4a – 8b + c = –20 (1)
N(5; 5) ∈ (C) ⇔ 52 + 52 – 2.a.5 – 2.b.5 + c = 0 ⇔ 10a + 10b – c = 50 (2)
P(6; –2) ∈ (C) ⇔ 62 + (–2)2 – 2.a.6 – 2.b.(–2) + c = 0 ⇔ 12a – 4b – c = 40 (3)
Từ (1), (2) và (3) ta có hệ phương trình:
Giải hệ phương trình trên ta được nghiệm a = 2, b = 1, c = –20.
Vậy đường tròn đi qua ba điểm M, N, P là : x2 + y2 – 4x – 2y – 20 = 0.
Bài 4 (trang 84 SGK Hình học 10): Lập phương trình đường tròn tiếp xúc với hai trục tọa độ Ox, Oy và qua điểm M(2; 1).
Lời giải
Gọi đường tròn cần tìm là (C) có tâm I(a ; b) và bán kính bằng R.
(C) tiếp xúc với Ox ⇒ R = d(I ; Ox) = |b|
(C) tiếp xúc với Oy ⇒ R = d(I ; Oy) = |a|
⇒ |a| = |b|
⇒ a = b hoặc a = –b.
+ TH1: Xét a = b thì I(a; a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 – a)2 = a2
⇔ a2 – 6a + 5 = 0
⇔ a = 1 hoặc a = 5.
* a = 1 ⇒ I(1; 1) và R = 1.
Ta có phương trình đường tròn (C): (x – 1)2 + (y – 1)2 = 1.
* a = 5 ⇒ I(5; 5), R = 5.
Ta có phương trình đường tròn (C) : (x – 5)2 + (y – 5)2 = 25.
+ TH2: Xét a = –b thì I(a; –a), R = |a|
Ta có: M ∈ (C) ⇒ IM = R ⇒ IM2 = R2
⇒ (2 – a)2 + (1 + a)2 = a2
⇔ a2 – 2a + 5 = 0 (Phương trình vô nghiệm)
Vậy có hai đường tròn thỏa mãn là: (C): (x – 1)2 + (y – 1)2 = 1 hoặc (C) : (x – 5)2 + (y – 5)2 = 25.
Bài 5 (trang 84 SGK Hình học 10): Lập phương trình của đường tròn tiếp xúc với các trục tọa độ và có tâm nằm trên đường thẳng 4x – 2y – 8 = 0
Lời giải
Bài 6 (trang 84 SGK Hình học 10): Cho đường tròn C có phương trình: x2 + y2 – 4x + 8y – 5 = 0
a, Tìm tọa độ tâm và bán kính của (C)
b, Viết phương trình tiếp tuyến với (C) đi qua điểm A(-1; 0)
c, Viết phương trình tiếp tuyến với (C) vuông góc với đường thẳng: 3x – 4y + 5 = 0.
Lời giải
a) x2 + y2 – 4x + 8y – 5 = 0
⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25
⇔ (x – 2)2 + (y + 4)2 = 25.
Vậy (C) có tâm I(2 ; –4), bán kính R = 5.
b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:
(–1 – 2)2 + (0 + 4)2 = 32 + 42 = 25 = R2
⇒ A thuộc đường tròn (C)
⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A
⇒ (d’) là đường thẳng đi qua A và vuông góc với IA
⇒ (d’) nhận
⇒ phương trình (d’): 3x – 4y + 3 = 0.
c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).
(d) có
(Δ) ⊥ (d) ⇒ (Δ) nhận
⇒ (Δ): 4x + 3y + c = 0.
(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R
Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.