Xem toàn bộ tài liệu Lớp 11: tại đây
- Sách giáo khoa đại số và giải tích 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11
- Sách giáo khoa hình học 11
- Sách Giáo Viên Hình Học Lớp 11
- Giải Toán Lớp 11
- Giải Sách Bài Tập Toán Lớp 11
- Sách Giáo Viên Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách giáo khoa đại số và giải tích 11 nâng cao
- Sách giáo khoa hình học 11 nâng cao
- Sách Giáo Viên Hình Học Lớp 11 Nâng Cao
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11
- Sách Bài Tập Đại Số Và Giải Tích Lớp 11 Nâng Cao
- Sách Bài Tập Hình Học Lớp 11 Nâng Cao
Sách giải toán 11 Bài 4: Biến cố và xác suất của biến cố (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 11 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 25 (trang 75 sgk Đại Số và Giải Tích 11 nâng cao): Chọn ngẫu nhiên một số nguyên dương không lớn hơn 50.
a) Mô tả không gian mẫu
b) Gọi A là biến cố “số được chọn là số nguyên tố”. Hãy liệt kê các kết quả thuận lợi cho A.
c) Tính xác suất của A
d) Tính xác suất để số được chọn nhỏ hơn 4.
Lời giải:
Giải bài 25 trang 75 SGK Đại Số và Giải Tích 11 nâng cao Giải bài 25 trang 75 SGK Đại Số và Giải Tích 11 nâng cao
a) Không gian mẫu Ω = {1, 2, 3,…50}
b) Kết quả thuận lợi cho A là :
n→
Bài 26 (trang 75 sgk Đại Số và Giải Tích 11 nâng cao): Chọn ngẫu nhiên một số nguyên dương nhỏ hơn 9. Tính xác suất để:
a) Số được chọn là số nguyên tố?
b) Số được chọn chia hết cho 3?
Lời giải:
Giải bài 26 trang 75 SGK Đại Số và Giải Tích 11 nâng cao Giải bài 26 trang 75 SGK Đại Số và Giải Tích 11 nâng cao
Không gian mẫu Ω = {1, 2, 3, 4, 5, 6, 7, 8}
a) A là biến cố “số được chọn là số nguyên tố”. Ta có ΩA = {2, 3, 5, 7}
Xác suất để số được chọn là số nguyên tố là:
b) Gọi B là biến cố “số được chọn chia hết cho 3”
n→
Bài 27 (trang 75 sgk Đại Số và Giải Tích 11 nâng cao): Danh sách lớp của Hường được đánh số từ 1 đến 30. Hường có số thứ tự là 12. Chọn ngẫu nhiên một bạn trong lớp.
a) Tính xác suất để Hường được chọn.
b) Tính xác suất để Hường không được chọn
c) Tính xác suất để một bạn có số thứ tự nhỏ hơn số thứ tự của Hường được chọn
Lời giải:
Giải bài 27 trang 75 SGK Đại Số và Giải Tích 11 nâng cao
a) Gọi A là biến cố “Hường được chọn”
Ta có P(A) = 1/30
b) Gọi B là biến cố “Hường không được chọn”
Ta có P(B) = 29/30
c) Gọi C là biến cố “Bạn có số thứ tự nhỏ hơn 12 được chọn”
Ta có P(C) = 11/30
n→
Bài 28 (trang 76 sgk Đại Số và Giải Tích 11 nâng cao): Gieo hai con súc sắc cân đối
a) Mô tả không gian mẫu
b) Gọi A là biến cố “Tổng số chấm trên mặt xuất hiện của hai con súc sắc nhỏ hơn hoặc bằng 7”. Liệt kê các kết quả thuận lợi cho A. Tính P(A).
c) Cũng hỏi như trên cho biến cố B: “Có ít nhất một con súc sắc xuất hiện mặt 6 chấm” và C: “Có đúng một con súc sức xuất hiện mặt 6 chấm”
Lời giải:
Giải bài 28 trang 76 SGK Đại Số và Giải Tích 11 nâng cao Giải bài 28 trang 76 SGK Đại Số và Giải Tích 11 nâng cao
a) Ω = {(a, b)|a, b ∈ N*, 1 ≤ a ≤ 6,1 ≤ b ≤ 6}
Không gian mẫu có 36 phần tử.
b) ΩA = {(6; 1),(5; 1); (5; 2),(4;2),(4;3),(3;1),(3;2),(3;3),(3;4),(2;1),(2;2),(2;3),(2;4),(2;5),(1;1),(1;2),(1;3),(1;4),(1;5),(1;6) }
Tập ΩA có 21 phần tử. Vậy P(A) = 21/36 = 7/12
c) ΩB = {(6;1),(6;2),(6;3),(6;4),(6;5),(6;6),(1;6),(2;6),(3;6),(4;6),(5;6)}
Tập ΩB có 11 phần tử. Vậy P(B) = 11/36
ΩC = {(6;1),(6;2),(6;3),(6;4),(6;5),(1;6),(2;6),(3;6),(4;6),(5;6)}
Tập ΩC có 10 phần tử. Vậy P(C) = 10/36 = 5/18
n→
Bài 29 (trang 76 sgk Đại Số và Giải Tích 11 nâng cao): Chọn ngẫu nhiên 5 người có tên trong một danh sách 20 người được đánh số từ 1 đến 20. Tính xác suất để 5 người được chọn có số thứ tự không lớn hơn 10 (tính chính xác đến hàng phần nghìn).
Lời giải:
Giải bài 29 trang 76 SGK Đại Số và Giải Tích 11 nâng cao Giải bài 29 trang 76 SGK Đại Số và Giải Tích 11 nâng cao
Số kết quả có thể là C520 . Số kết quả thuận lợi là số cách chọn 5 số trong tập {1, 2,…,10} . Do đó số kết quả thuận lợi là C510 .
n→