Xem toàn bộ tài liệu Lớp 12: tại đây
- Sách giáo khoa đại số và giải tích 12
- Sách giáo khoa hình học 12
- Sách giáo khoa giải tích 12 nâng cao
- Sách giáo khoa hình học 12 nâng cao
- Giải Sách Bài Tập Toán Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12
- Sách Giáo Viên Hình Học Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 12 Nâng Cao
- Giải Toán Lớp 12 Nâng Cao
- Sách Bài Tập Giải Tích Lớp 12
- Sách Bài Tập Giải Tích Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12
Sách giải toán 12 Bài 2: Khối đa diện lồi và khối đa diện đều giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 12 Hình học Bài 2 trang 15: Tìm ví dụ về khối đa diện lồi và khối đa diện không lồi trong thực tế.
Lời giải:
Khối đa diện lồi trong thực tế: kim tự tháp Ai Cập, viên kim cương, rubic
Khối đa diện không lồi trong thực tế: cái bàn
Lời giải:
Khối bát diện đều có 6 đỉnh và 12 cạnh
Lời giải:
ABCD là tứ diện đều ⇒ tam giác ABC đều ⇒ AB = BC = CA = a
I, E, F lần lượt là trung điểm của các cạnh AC, AB, BC nên ta có IE, IF, EF là các đường trung bình của tam giác ABC
⇒ IE = 1/2 BC = 1/2 a
IF = 1/2 AB = 1/2 a
EF = 1/2 AC = 1/2 a
Nên tam giác IEF là tam giác đều cạnh bằng a/2
Chứng minh tương tự ta có: IFM, IMN, INE, JEF, JFM, JMN và JNE là những tam giác đều cạnh bằng a/2
Lời giải:
ABCD.A’B’C’D’ là hình lập phương cạnh a nên các mặt là các hình vuông cạnh a
Tứ diện AB’CD’ có các cạnh là các đường chéo của các mặt bên hình lập phương ABCD.A’B’C’D’ nên tứ diện AB’CD’ có các cạnh bằng nhau ⇒ AB’CD’ là tứ diện đều
Cạnh của tứ diện đều AB’CD’ bằng độ dài đường chéo của hình vuông cạnh a và bằng a√2
Bài 1 (trang 18 SGK Hình học 12): Cắt bìa theo mẫu dưới đây (h.123), gấp theo đường kẻ, rồi dán các mép lại để được các hình tứ diện đều, hình lập phương và hình bát diện đều.
Lời giải:
Bài 2 (trang 18 SGK Hình học 12): Cho hình lập phương (H). Gọi (H’) là hình bát diện đều có các đỉnh là tâm các mặt của (H). Tính tỉ số diện tích toàn phần của (H) và (H’).
Lời giải:
Gọi a là cạnh của hình lập phương ABCD.A1B1C1D1;
⇒ Diện tích toàn phần của hình lập phương (H) là: SH = 6.a2 (đvdt).
Gọi tâm các mặt lần lượt là E, F, M, N, P, Q như hình vẽ.
⇒ (H’) là bát diện đều EMNPQF.
+ EM là đường trung bình của ΔBA’D
⇒ (H’) là bát diện đều gồm 8 mặt là các tam giác đều cạnh bằng
⇒ Diện tích một mặt của (H’) là:
⇒ Diện tích toàn phần của (H’) là:
Vậy tỉ số diện tích cần tính là:
Bài 3 (trang 18 SGK Hình học 12): Chứng minh rằng tâm của các mặt của hình tứ diện đều là các đỉnh của một tứ diện đều.
Lời giải:
Bài 4 (trang 18 SGK Hình học 12): Cho hình bát diện đều ABCDEF.
Chứng minh rằng:
a)Các đoạn thẳng AF, BD và CE đôi một vuông góc với nhau và cắt nhau tại trung điểm mỗi đường.
b)ABFD, AEFC và BCDE là những hình vuông.
Lời giải:
Giả sử bát diện đều ABCDEF có cạnh bằng a.
a) B, C, D, E cách đều A và F suy ra B, C, D, E cùng nằm trên mặt phẳng trung trực của đoạn thẳng AF
Trong mp (BCDE), ta có BC = CD = DE = EB (= a)
⇒ BCDE là hình thoi
⇒ BD ⊥ EC và BD, EC cắt nhau tại trung điểm mỗi đường.
Chứng minh tương tự ta suy ra AF và BD, AF và CE vuông góc nhau và cắt nhau tại trung điểm mỗi đường.
b) Gọi trung điểm BD, CE, AF là O.
Mà AB = AE (= a) ⇒ BO = OE ⇒ BD = EC
⇒ Hình thoi BCDE là hình vuông.
Chứng minh tương tự: ABFD, AEFC đều là hình vuông.