Xem toàn bộ tài liệu Lớp 12: tại đây
- Sách giáo khoa đại số và giải tích 12
- Sách giáo khoa hình học 12
- Sách giáo khoa giải tích 12 nâng cao
- Sách giáo khoa hình học 12 nâng cao
- Giải Toán Lớp 12
- Giải Sách Bài Tập Toán Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12
- Sách Giáo Viên Hình Học Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 12 Nâng Cao
- Sách Bài Tập Giải Tích Lớp 12
- Sách Bài Tập Giải Tích Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12
Sách giải toán 12 Luyện tập (trang 92-93) (Nâng Cao) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 32 (trang 92 sgk Giải Tích 12 nâng cao): Hãy tính:
Lời giải:
Bài 33 (trang 92 sgk Giải Tích 12 nâng cao): Hãy so sánh:
a) log34 và log4(1/3) b) 3log41,1 và 7log40,99
Lời giải:
a) Ta có: log34 > log33=1
log4(1/3) < log44=1
Vậy log34 > log4(1/3)
b) Ta có: log41,1 > log41=0 <=> log41,1 > 30=1
log40,99 < log41=0 <=> 7log40,99 < 70=1
Vậy 3log41,1 > 7log40,99
Bài 34 (trang 92 sgk Giải Tích 12 nâng cao): Không dùng bảng số và máy tính, hãy so sánh:
a) log2+log3 với log5 b) log12 – log 5 với log7
c) 3log2 + log3 với 2log5 d) 1 + 2log3 với log27
Lời giải:
a) Ta có log2 + log3 = log6 > log5
b) log12 – log5 = log(12/5)< log7
c) 3log2 + log3 = log23 +log3=log8.3=log34 < log52=2log5
d) 1+2log3=log10+log32=log(10.9)=log90 > log27
Bài 35 (trang 92 sgk Giải Tích 12 nâng cao): Trong mỗi trường hợp sau, hãy tính logax,biết logab=3;logac=-2
Lời giải:
a) log_ax=loga(a3 b2√c)=logaa3+logab2+loga√c
=3 logaa+2 logab+ logac/2=3 + 2.3 + (-2)/2=8
Bài 36 (trang 93 sgk Giải Tích 12 nâng cao): Trong mỗi trường hợp sau, hãy tìm x.
a) log3x=log3a4+7 log3b b) log5x=2 log5a-log5b
Lời giải:
a) log3x=log3a4+7 log3b <=> log3x=log3a4 b7 <=> x=a4 b7
Bài 37 (trang 93 sgk Giải Tích 12 nâng cao): Hãy biểu diễn logarit sau qua α và β
a) log√350 nếu log315=α;log310=β b) log41250 nếu log25=α
Lời giải:
a) Từ log315=α <=> log3(3.5)=α <=> 1+log35=α <=> log35=α-1
log√350=3 log350=3(log35+log310 )=3(α-1+β)
Bài 38 (trang 93 sgk Giải Tích 12 nâng cao): Đơn giản biểu thức:
Lời giải:
Bài 39 (trang 93 sgk Giải Tích 12 nâng cao): Tìm x, biết:
Lời giải:
a) logx27=3 <=> 27=x3 <=> x=3
Bài 40 (trang 93 sgk Giải Tích 12 nâng cao): Số nguyên tố dạng Mp=2p-1, trong đó p là một số nguyên tố được gọi là số nguyên tố Mec-sen (Mersenne Marin, 1588 – 1648, người pháp). Ơ – le phát hiện M31 năm 1750. Luy – Ca (Lucas Edouard, 1842 – 1891, người Pháp) phát hiện M127 năm 1876. M1398269 được phát hiện năm 1996. Hỏi rằng nếu viết ba số đó trong hệ thập phân thì mỗi số có bao nhiêu chữ số.
Lời giải:
Ta có log(2p-1)=a. Để tính số chữ số của 2p-1 thì ta tính số chữ số của 2p. Khi viết trong hệ thập phân người ta lấy giá trị gần đúng của log2 là 0,3010
=> Số chữ số của M31 là [31.log2]+1=[31.0,3010]+1=10
=> Số chữ số của M127 là [127.log2]+1=[127.0,3010]+1=39
=> Số chữ số của M1398269 là [1398269.log2]+1=[1398269.0,3010]+1=420921
Bài 41 (trang 93 sgk Giải Tích 12 nâng cao): Một người gửi 15 triệu đồng vào ngân hàng theo thể tức lãi kép kì hạn 1 quý với lãi suất 1,65% một quý. Hỏi sau bao lâu người đó có ít nhất 20 triệu đồng (cả vốn lẫn lãi) từ số vốn ban đầu.
Lời giải:
Áp dụng công thức lãi kép ta có: C=A(1+r)N
Trong đó: A = 15; r = 1,65%, C ≥ 20
=> 15(1+1,65%)N ≥ 20 => (1+1,65%)N ≥ 4/3
=> N ≥ log(1-0,0165)(4/3)
Vậy ít nhất 4 năm 3 quý.