Xem toàn bộ tài liệu Lớp 12: tại đây
- Sách giáo khoa đại số và giải tích 12
- Sách giáo khoa hình học 12
- Sách giáo khoa giải tích 12 nâng cao
- Sách giáo khoa hình học 12 nâng cao
- Giải Sách Bài Tập Toán Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12
- Sách Giáo Viên Hình Học Lớp 12
- Sách Giáo Viên Giải Tích Lớp 12 Nâng Cao
- Sách Giáo Viên Hình Học Lớp 12 Nâng Cao
- Giải Toán Lớp 12 Nâng Cao
- Sách Bài Tập Giải Tích Lớp 12
- Sách Bài Tập Giải Tích Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12 Nâng Cao
- Sách Bài Tập Hình Học Lớp 12
Sách giải toán 12 Ôn tập cuối năm giải tích 12 giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 12 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Câu hỏi 1 (trang 145 SGK Giải tích 12): Định nghĩa sự đơn điệu ( đồng biến, nghịch biến) của một hàm số trên một khoảng.
Lời giải:
Cho hàm số y = f(x) xác định trên khoảng K, hàm số f(x) được gọi là
+ Đồng biến trên K nếu ∀ x1, x2 ∈ K thỏa mãn x1 < x2 thì f(x1) < f(x2).
+ Nghịch biến trên K nếu ∀ x1, x2 ∈ K thỏa mãn x1 < x2 thì f(x1) > f(x2)
Hàm số chỉ đồng biến hoặc nghịch biến trên K gọi là đơn điệu trên K.
Câu hỏi 2 (trang 145 SGK Giải tích 12): Phát biểu các điều kiện cần và đủ để hàm số f(x) đơn điệu trên một khoảng.
Lời giải:
Cho hàm số y = f(x) có đạo hàm trên K.
+ f(x) đồng biến trên K ⇔ f’(x) ≥ 0 với ∀ x ∈ K, f’(x) = 0 tại hữu hạn điểm.
+ f(x) nghịch biến trên K ⇔ f’(x) ≤ 0 với ∀ x ∈ K, f’(x) = 0 tại hữu hạn điểm.
Câu hỏi 3 (trang 145 SGK Giải tích 12): Phát biểu các điều kiện đủ để hàm số f(x) có cực trị ( cực đại cực tiểu) tại điểm xo
Lời giải:
Điều kiện để hàm có cực trị:
Định lí 1: Cho hàm số y = f(x) liên tục trên K = (x0 – h; x0 + h), h > 0 và có đạo hàm trên K hoặc trên K \ {x0}, nếu:
– f’(x) > 0 trên (x0 – h; x0) và f’(x) < 0 trên (x0; x0 + h) thì x0 là một điểm cực đại của f(x).
– f’(x) < 0 trên (x0 – h; x0) và f’(x) > 0 trên (x0; x0 + h) thì x0 là một điểm cực tiểu của f(x).
Câu hỏi 4 (trang 145 SGK Giải tích 12): Nêu sơ đồ khảo sát sự biến thiên và vẽ đồ thị hàm số.
Lời giải:
Bước 1: Tìm tập xác định của hàm số
Bước 2: Xét sự biến thiên
– Xét chiều biến thiên:
+ Tìm đạo hàm f’(x)
+ Tìm các điểm mà tại đó f’(x) bằng không hoặc không xác định
+ Xét dấu của đạo hàm f’(x) và suy ra chiều biến thiên của hàm số.
– Tìm cực trị
– Tìm giới hạn vô cực và tiệm cận ( nếu có)
– Lập bảng biến thiên.
Bước 3: Vẽ đồ thị hàm số.
Câu hỏi 5 (trang 145 SGK Giải tích 12): Nêu định nghĩa và các tính chất cơ bản của loogarit.
Lời giải:
Câu hỏi 6 (trang 145 SGK Giải tích 12): Phát biểu định lí về quy tắc logarit, công thức đổi cơ số.
Lời giải:
• Quy tắc tính logarit
• Đổi cơ số
Câu hỏi 7 (trang 145 SGK Giải tích 12): Nêu tính chất của hàm số mũ, hàm số logarit, mối liên hệ giữa đồ thị của hàm số mũ cà hàm số logarit cùng cơ số.
Lời giải:
1. Hàm số mũ
Cho số a > 0, a ≠ 1. Hàm số y = ax được gọi là hàm số mũ cơ số a.
Khảo sát:
* D = R.
* Nếu:
– a > 1: hàm số luôn đồng biến
– 0 < a < 1: hàm số luôn nghịch biến
* Đồ thị luôn đi qua hai điểm ( 0; 1) và (1; a) có tiệm cận ngang là trục Ox.
2. Hàm Logarit
Cho số a > 0, a ≠ 1 . Hàm số
được gọi là hàm logarit cơ số a.
Khảo sát:
* D = (0;+∞)
* Nếu:
– a > 1: Hàm số luôn đồng biến trên D
– 0 < a < 1: hàm số luôn nghịch biến
* Đồ thị luôn đi qua hai điểm (1; 0) và (a; 1) có tiệm cận đứng là trục Oy.
• Liên hệ giữa đồ thị của hàm số mũ và hàm số logarit cùng cơ số: Đồ thị của hàm số mũ và đồ thị của hàm số logarit đối xứng nhau qua đường phân giác góc phần tư thứ nhất.
Câu hỏi 8 (trang 145 SGK Giải tích 12): Nêu định nghĩa và các phương pháp tính nguyên hàm.
Lời giải:
Nguyên hàm
Cho hàm số f(x) xác định trên K ( k là nửa khoảng hay đoạn của trục số). Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K.
Phương pháp tính nguyên hàm
* Đổi biến số:
Câu hỏi 9 (trang 145 SGK Giải tích 12): Nêu định nghĩa và các phương pháp tính tích phân.
Lời giải:
• Định nghĩa
Cho hàm số y = f(x) liên tục trên [a; b] , F(x) là một nguyên hàm của f(x) trên [a; b]. Hiệu số F(b) – F(a) được gọi là tích phân từ a đến b của hàm số f(x)
• Phương pháp tính tích phân
a) Đổi biến số:
Định lí 1: Cho hàm số f(x) liên tục trên [a; b]. Giả sử hàm số x = φ(t) có đạo hàm liên tục trên đoạn [ α;β] sao cho φ(α) = a; φ(β) = βvà a ≤ φ(t) ≤ b với mọi t ∈ [α;β]. Khi đó:
b) Tích phân từng phần
Nếu u = u(x) và v = v(x) là hai hàm số có đạo hàm liên tục trên đoạn [a; b] thì:
Câu hỏi 10 (trang 145 SGK Giải tích 12): Nhắc lại định nghĩa số phức, số phức liên hợp, mô đun của số phức. Biểu diễn hình học của số phức.
Lời giải:
1. Số phức
Mỗi biểu thức dạng a + bi, trong đó: a, b ∈ R;i2= -1 được gọi là số phức. Trong đó a được gọi là phần thực, b gọi là phần ảo, số i là đơn vị ảo.
2. Mô đun
Cho số phức z = a + bi, được biểu diễn bởi điểm M(a;b) trên tọa độ Oxy. Ta gọi mô đun của số phức z, kí hiệu là |z| là đọ dài của vectơ OM.
3. Số phức liên hợp
Cho số phức z = a + bi, ta gọi a – bi là số phức liên hợp của z
Bài 1 (trang 145 SGK Giải tích 12): Cho hàm số f(x)=ax2-2(a+1)x+a+2 (a ≠ 0)
a) Chứng tỏ rằng phương trình f(x)=0 luôn có nghiệm thực. Tính các nghiệm đó.
b) Tính tổng S và tích P của các nghiệm của phương trình f(x) =0. Khảo sát sự biến thiên và vẽ đồ thị của S và P theo a.
Lời giải:
Bảng biến thiên:
Đồ thị ( hình thang trên ).
Bảng biến thiên
Đồ thị ( hình trên).
Bài 2 (trang 145 SGK Giải tích 12): Cho hàm số
Lời giải:
a) Với a = 0 ta có hàm số
– Tập xác định : D = R.
– Sự biến thiên :
y’ = -x2 – 2x + 3 ;
y’ = 0 ⇔ x = -3 hoặc x = 1.
Bảng biến thiên :
Kết luận :
Hàm số đồng biến trên (-3 ; 1)
Hàm số nghịch biến trên (-∞; -3) và (1; +∞).
Hàm số đạt cực đại tại x = 1 ;
Hàm số đạt cực tiểu tại x = -3 ; yCT = -13.
– Đồ thị hàm số :
b) Diện tích hình phẳng cần tính :
Bài 3 (trang 146 SGK Giải tích 12): Cho hàm số y = x3 + ax2 + bx+1
a) Tìm a và b để đồ thị của hàm số đi qua hai điểm: A(1;2)và B(-2;-1).
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với các giá trị tìm được của a và b.
c) Tính thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = 0, x = 0, x = 1 và đồ thị (C ) xung quanh trục hoành.
Lời giải:
a) Đồ thị hàm số đi qua A(1; 2) và B(2; -1)
b) Với a = 1; b = -1, hàm số trở thành: y = x3 + x2 – x + 1.
– Tập xác định : D = R.
– Sự biến thiên :
+ Bảng biến thiên :
Kết luận :
Hàm số đồng biến trên (-∞ ; -1) và
Hàm số nghịch biến trên
Hàm số đạt cực đại tại x = -1 ; yCĐ = 2.
Hàm số đạt cực tiểu tại
– Đồ thị :
c) Thể tích vật cần tính là :
Bài 4 (trang 146 SGK Giải tích 12): Xét chuyển động thẳng được xác định bởi phương trình:
Trong đó t được tính bằng giây và S được tính bằng mét.
a) Tính v(2), a(2), biết v(t), a(t) lần lượt là vận tốc và gia tốc chuyển động đã cho.
b) Tìm thời điểm t mà tại đó vận tốc bằng 0.
Lời giải:
Theo ý nghĩa cơ học của đạo hàm ta có:
a) v(t) = s’(t) = t3 – 3t2 + t – 3.
⇒ v(2) = 23 – 3.22 + 2 – 3 = -5 (m/s)
a(t) = v’(t) = s’’(t) = 3t2 – 6t + 1
⇒ a(2) = 3.22 – 6.2 + 1 = 1 (m/s2)
b) v(t) = 0
⇔ t3 – 3t2 + t – 3 =0
⇔ (t – 3)(t2 + 1) = 0
⇔ t = 3.
Vậy thời điểm t0 = 3s thì vận tốc bằng 0.
Bài 5 (trang 146 SGK Giải tích 12): Cho hàm số y = x4 + a4 + b
a) Tính a, b để hàm số cực trị bằng 3/2 khi x =1.
b) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho khi:
a = -1/2, b = 1
c) Viết phương trình tiếp tuyến của (C) tại các điểm có tung độ bằng 1.
Lời giải:
a) Hàm số có cực trị tại x = 1.
⇔ y’(1) = 0
⇔ 4.13 + 2a.x = 0
⇔ a = -2.
b) Với
– TXĐ: D = R.
– Sự biến thiên:
+ Giới hạn:
+Bảng biến thiên:
Kết luận: Hàm số đồng biến trên
Hàm số nghịch biến trên
Hàm số đạt cực đại tại x = 0; yCĐ = 1
Hàm số đạt cực tiểu tại
– Đồ thị:
Bài 6 (trang 146 SGK Giải tích 12):
a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số khi m = 2.
b) Viết phương trình tiếp tuyến d của đồ thi (C ) tại điểm M có hoành độ a ≠ -1.
Lời giải:
a) Với m = 2 ta có hàm số
– Tập xác định : D = R\{-1}.
– Sự biến thiên :
⇒ Hàm số đồng biến trên (-∞ ; -1) và (-1 ; +∞).
+ Cực trị : hàm số không có cực trị
+ Tiệm cận :
⇒ y = 1 là tiệm cận ngang của đồ thị hàm số
⇒ x = -1 là tiệm cận ngang của đồ thị hàm số.
+ Bảng biến thiên :
– Đồ thị :
b) Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = a là:
Bài 7 (trang 146 SGK Giải tích 12): Cho hàm số
a) Khảo sát sự biến thiên và vẽ đồ thị (C ) của hàm số đã cho.
b) Tìm giao điểm của (C ) và đồ thị hàm số y=x2+1 . Viết phương trình tiếp tuyến của (C ) tại mỗi giao điểm.
c) Tính thể tích vật tròn xoay thu được khi hình phẳng H giới hạn bởi đồ thị (C ) và các đường thẳng y = 0; x = 1 xung quanh trục Ox.
Lời giải:
a) Hàm số
– Tập xác định: D = R\{2}
– Sự biến thiên:
⇒ Hàm số đồng biến trên (-∞; 2) và (2; +∞).
+ Cực trị : Hàm số không có cực trị
+ Tiệm cận:
⇒ y = 0 (trục Ox) là tiệm cận ngang của đồ thị hàm số.
⇒ x = 2 là tiệm cận đứng của đồ thị hàm số.
+ Bảng biến thiên:
– Đồ thị:
Bài 8 (trang 147 SGK Giải tích 12): Tìm giá trị lớn nhất và nhỏ nhất của hàm số:
Lời giải:
Bài 9 (trang 147 SGK Giải tích 12): Giải các phương trình sau:
Lời giải:
Bài 10 (trang 147 SGK Giải tích 12): Giải các bất phương trình sau:
Lời giải:
Bài 11 (trang 147 SGK Giải tích 12): Tính các tích phân sau bằng phương pháp tích phân từng phần:
Lời giải:
Bài 12 (trang 147 SGK Giải tích 12): Tính các tích phân sau bằng phương pháp đổi biến số:
Lời giải:
Bài 13 (trang 148 SGK Giải tích 12): Tính diện tích hình phẳng giới hạn bởi các đường:
a) y = x2 + 1; x = -1; x = 2 và các trục hoành.
b) y = ln x ; x =
Lời giải:
a) Diện tích cần tính là:
b) Diện tích cần tính là:
Bài 14 (trang 148 SGK Giải tích 12): Tìm thể tích vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường y = 2x2 và y = x3 xung quanh trục Ox.
Lời giải:
Hoành độ giao điểm hai đường cong là nghiệm của phương trình :
2x2 = x3 ⇔ x2(2 – x) = 0 ⇔ x = 0 hoặc x = 2.
Vậy thể tích cần tính là :
Bài 15 (trang 148 SGK Giải tích 12): Giải các phương trình sau trên tập số phức:
a) (3 + 2i)z – (4 + 7i) = 2 – 5i
b) (7 – 3i)z + (2 + 3i) = (5 – 4i)z
c) z2 – 2z + 13 = 0
d) z4 – z2 – 6 = 0
Lời giải:
a) (3 + 2i).z – (4 + 7i) = 2 – 5i
⇔ (3 + 2i).z = (2 – 5i) + (4 + 7i)
⇔ (3 + 2i).z = 6 + 2i
b) (7 – 3i)z + (2 + 3i) = (5 – 4i).z
⇔ [(7 – 3i) – (5 – 4i)].z = – (2 + 3i)
⇔ (2 + i).z = -(2 + 3i)
c) z2 – 2z + 13 = 0
có Δ’ = 1 – 13 = 12 < 0
⇒ Phương trình có hai nghiệm phân biệt:
d) z4 – z2 – 6 = 0
⇔ (z2 + 2)(z2 – 3) = 0
Bài 16 (trang 148 SGK Giải tích 12): Trên mặt phẳng tọa độ, hãy tìm tập hợp các điểm biểu diễn số phức z thỏa mãn từng bất đẳng thức:
a) |z| < 2
b) |z – i| ≤ 1
c) |z – 1 – i| < 1
Lời giải:
Tập hợp các điểm M(x; y) của mặt phẳng tọa độ biểu diễn số phức z = x + yi thỏa mãn điều kiện:
a) |z| < 2 ⇔ √(x2 + y2) < 2 ⇔ x2 + y2 < 4.
Các điểm M(x; y) như vậy nằm trong đường tròn có tâm O bán kính bằng 2 không kể các điểm trên đường tròn.
b) z – i = z + (y – 1).i
|z – i| ≤ 1
⇔ √(x2 + (y – 1)2) ≤ 1
⇔ x2 + (y – 1)2 ≤ 1.
Tập hợp tất cả các điểm biểu diễn các số phức thỏa mãn |z – 1| ≤ 1 là các điểm của hình tròn tâm (0; 1) bán kính bằng 1 kể cả biên.
c) z – 1 – i = (x – 1) + (y – 1)i
|z – 1 – i| < 1
⇔ (x – 1)2 + (y – 1)2 < 1.
Vậy tập hợp các điểm cần tìm là hình tròn (không kể biên) tâm (1; 1), bán kính bằng 1.