Xem toàn bộ tài liệu Lớp 7: tại đây
- Giải Sách Bài Tập Toán Lớp 7
- Sách Giáo Khoa Toán lớp 7 tập 1
- Sách Giáo Khoa Toán lớp 7 tập 2
- Sách Giáo Viên Toán Lớp 7 Tập 1
- Sách Giáo Viên Toán Lớp 7 Tập 2
- Vở Bài Tập Toán Lớp 7 Tập 1
- Vở Bài Tập Toán Lớp 7 Tập 2
Sách giải toán 7 Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu – Luyện tập (trang 59-70) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 7 Tập 2 Bài 2 trang 57: Cho điểm A không thuộc đường thẳng d (h.8).
Hãy dùng êke để vẽ và tìm hình chiếu của điểm A trên d. Vẽ một đường xiên từ A đến d, tìm hình chiếu của đường xiên này trên d.
Lời giải
Sau khi vẽ theo yêu cầu đề bài, ta có:
– Kẻ AH ⊥ d, H ∈ d ⇒ H là hình chiếu của A trên d
– Trên d lấy điểm B ≠ H . Nối AB ⇒ AB là đường xiên từ A đến d
Hình chiếu của đường xiên AB trên d là HB
Trả lời câu hỏi Toán 7 Tập 2 Bài 2 trang 57: Từ một điểm A không nằm trên đường thẳng d, ta có thể kẻ được bao nhiêu đường vuông góc và bao nhiêu đường xiên đến đường thẳng d ?
Lời giải
– Từ một điểm A không nằm trên đường thẳng d, ta có thể kẻ được 1 đường vuông góc với d
– Từ một điểm A không nằm trên đường thẳng d, ta có thể kẻ được vô số đường xiên đến d
Trả lời câu hỏi Toán 7 Tập 2 Bài 2 trang 58: Hãy dùng định lí Py-ta-go để so sánh đường vuông góc AH với đường xiên AB kẻ từ điểm A đến đường thẳng d.
Lời giải
Xét tam giác AHB vuông tại H
Áp dụng định lí Py-ta-go ta có:
AB2 = AH2 + BH2
⇒ AB2 > AH2
⇒ AB > AH
Hay AH < AB
Trả lời câu hỏi Toán 7 Tập 2 Bài 2 trang 58: Cho hình 10. Hãy sử dụng định lí Py-ta-go để suy ra rằng:
a) Nếu HB > HC thì AB > AC;
b) Nếu AB > AC thì HB > HC;
c) Nếu HB = HC thì AB = AC, và ngược lại, nếu AB = AC thì HB = HC.
Lời giải
Xét tam giác AHB vuông tại H
Áp dụng định lí Py-ta-go ta có:
AB2 = AH2 + HB2 (1)
Xét tam giác AHC vuông tại H
Áp dụng định lí Py-ta-go ta có:
AC2 = AH2 + HC2 (2)
a) Nếu HB > HC ⇒ HB2 > HC2.
⇒ AH2 + HB2 > AH2 + HC2
Kết hợp với 2 điều kiện (1) và (2)
⇒ AB2 > AC2
⇒ AB > AC
b) AB > AC ⇒ AB2 > AC2
Kết hợp với 2 điều kiện (1) và (2)
⇒ AH2 + HB2 > AH2 + HC2
⇒ HB2 > HC2
⇒ HB > HC
c) – Nếu HB = HC ⇒ HB2 = HC2.
⇒ AH2 + HB2 = AH2 + HC2
Kết hợp với 2 điều kiện (1) và (2)
⇒ AB2 = AC2
⇒ AB = AC
– Nếu AB = AC ⇒ AB2 = AC2
Kết hợp với 2 điều kiện (1) và (2)
⇒ AH2 + HB2 = AH2 + HC2
⇒ HB2 = HC2
⇒ HB = HC
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Bài 8 (trang 59 SGK Toán 7 tập 2): Cho hình 11, biết rằng AB < AC. Trong các kết luận sau, kết luận nào đúng? Tại sao?
a) HB = HC;
b) HB > HC;
c) HB < HC.
Lời giải:
Dựa vào hình vẽ, ta có:
AB, AC là hai đường xiên kẻ từ A đến BC.
HB là hình chiếu của AB trên đường thẳng BC.
HC là hình chiếu của AC trên đường thẳng BC.
Mà AB < AC nên HB < HC (Đường xiên nào lớn hơn thì có hình chiếu lớn hơn).
Vậy c) đúng.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Bài 9 (trang 59 SGK Toán 7 tập 2): Để tập bơi nâng dần khoảng cách, hàng ngày bạn Nam xuất phát từ M, ngày thứ nhất bạn bơi đến A, ngày thứ hai bạn bơi đến B, ngày thứ ba bạn bơi đến C, …(hình 12).
Hỏi rằng bạn Nam tập bơi như thế có đúng mục đích đề ra hay không (ngày hôm sau có bơi xa hơn ngày hôm trước hay không)? Vì sao?
Lời giải:
+ Nhận thấy các điểm A, B, C, D, … cùng nằm trên một đường thẳng. Gọi đường thẳng đó là đường thẳng d.
+ Theo định nghĩa:
MA, MB, MC, MD, … là các đường xiên kẻ từ M đến d.
MA là đường vuông góc kẻ từ M đến d
AB là hình chiếu của MB trên d
AC là hình chiếu của MC trên d
AD là hình chiếu cùa MD trên d
…
+ Theo định lý 1, MA là đường ngắn nhất trong các đường MA, MB, MC, …
+ Theo định lý 2: AB < AC < AD < … nên MB < MC < MD < … (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
Vậy MA < MB < MC < MD < … nên bạn Nam đã tập đúng mục đích đề ra.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Luyện tập (trang 59-60 sgk Toán 7 Tập 2)
Bài 10 (trang 59 SGK Toán 7 tập 2): Chứng minh rằng trong một tam giác cân, độ dài đoạn thẳng nối đỉnh đối diện với đáy và một điểm bất kỳ của cạnh đáy nhỏ hơn hoặc bằng độ dài của cạnh bên.
Lời giải:
Giả sử ΔABC cân tại A, M là điểm thuộc cạnh đáy BC, ta chứng minh AM ≤ AB; AM ≤ AC.
– TH1 : Nếu M ≡ B hoặc M ≡ C (Kí hiệu đọc là trùng với) thì AM = AB = AC.
– TH2 : Nếu M nằm giữa B và C và M ≠ B; M ≠ C.
Kẻ AH ⊥ BC tại H
+ Nếu M ≡ H ⇒ AM ⊥ BC tại M hay AM là đường vuông góc từ A đến BC.
Mà AB, AC là các đường xiên từ A đến đường thẳng BC.
Theo định lí 1 : Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến đường thẳng đó, đường thẳng vuông góc là đường ngắn nhất.
⇒ AM < AB và AM < AC.
+ Nếu M ≠ H giả sử M nằm giữa H và C ⇒ MH < CH.
Vì MH và CH lần lượt là hình chiếu của MA và CA trên đường BC
Mà MH < CH ⇒ MA < CA (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
Chứng minh tương tự nếu M nằm giữa H và B
Vậy mọi vị trí của M trên cạnh đáy BC thì AM ≤ AB = AC.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Luyện tập (trang 59-60 sgk Toán 7 Tập 2)
Bài 11 (trang 60 SGK Toán 7 tập 2): Một cách chứng minh khác của định lí 2:
Cho hình 13. Dùng quan hệ giữa góc và cạnh đối diện trong một tam giác để chứng minh rằng:
Nếu BC < BD thì AC < AD
Hướng dẫn:
a) Góc ACD là góc gì? Tại sao?
b) Trong tam giác ACD, cạnh nào lớn nhất, tại sao?
Lời giải:
a) Ta có BC < BD mà C, D nằm cùng phía so với B ⇒ C nằm giữa B và D.
b) Trong tam giác ACD có góc ACD là góc tù .
Mà AD là cạnh đối diện với góc ACD.
⇒ AD là cạnh lớn nhất trong tam giác ACD (cạnh đối diện với góc tù là cạnh lớn nhất trong tam giác).
nên AD > AC hay AC < AD
Vậy Nếu : BC < BD thì AC < AD.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Luyện tập (trang 59-60 sgk Toán 7 Tập 2)
Bài 12 (trang 60 SGK Toán 7 tập 2): Cho hình 14. Ta gọi độ dài đoạn thẳng AB là khoảng cách giữa hai đường thẳng song song a và b.
Một tấm gỗ xẻ có hai cạnh song song. Chiều rộng của tấm gỗ là khoảng cách giữa hai cạnh đó.
Muốn đo chiều rộng của tấm gỗ, ta phải đặt thước như thế nào? Tại sao? Cách đặt thước như trong hình 15 có đúng không?
Lời giải:
Dựa vào hình 14 ta nhận thấy khoảng cách giữa hai đường thẳng song song là độ dài của đoạn thẳng có hai đầu nằm trên hai đường thẳng và vuông góc với cả hai đường thẳng đó.
Vì vậy muốn đo bề rộng của một tấm gỗ chính là xác định khoảng cách giữa hai đường thẳng song song ta phải đặt thước vuông góc với hai cạnh song song của tấm gỗ.
Cách đặt thước như trong hình 15 là sai.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Luyện tập (trang 59-60 sgk Toán 7 Tập 2)
Bài 12 (trang 60 SGK Toán 7 tập 2): Cho hình 14. Ta gọi độ dài đoạn thẳng AB là khoảng cách giữa hai đường thẳng song song a và b.
Một tấm gỗ xẻ có hai cạnh song song. Chiều rộng của tấm gỗ là khoảng cách giữa hai cạnh đó.
Muốn đo chiều rộng của tấm gỗ, ta phải đặt thước như thế nào? Tại sao? Cách đặt thước như trong hình 15 có đúng không?
Lời giải:
Dựa vào hình 14 ta nhận thấy khoảng cách giữa hai đường thẳng song song là độ dài của đoạn thẳng có hai đầu nằm trên hai đường thẳng và vuông góc với cả hai đường thẳng đó.
Vì vậy muốn đo bề rộng của một tấm gỗ chính là xác định khoảng cách giữa hai đường thẳng song song ta phải đặt thước vuông góc với hai cạnh song song của tấm gỗ.
Cách đặt thước như trong hình 15 là sai.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Luyện tập (trang 59-60 sgk Toán 7 Tập 2)
Bài 13 (trang 60 SGK Toán 7 tập 2): Cho hình 16. Hãy chứng minh rằng:
a) BE < BC;
b) DE < BC.
Lời giải:
a) Ta có: BE, BC là hai đường xiên vẽ từ B đến đường AC.
BA ⏊ AC tại A nên A là hình chiếu của B trên AC
⇒ AE, AC lần lượt là hình chiếu của BE, BC.
Trong hình vẽ E nằm giữa A và C ⇒ AE < AC ⇒ BE < BC (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
b) Trong hình vẽ D nằm giữa A và B ⇒ AD < AB
Ta có: ED, EB là hai đường xiên vẽ từ E đến đường AB
EA ⏊ AB tại A nên A là hình chiếu của E trên AB.
⇒ AD, AB lần lượt là hình chiếu của ED, EB trên AB
Trong hình vẽ D nằm giữa A và B ⇒ AD < AB nên ED < EB hay DE < BE (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).
Kết hợp với kết quả câu a suy ra DE < BE < BC ⇒ DE < BC.
Bài 2: Quan hệ giữa đường vuông góc và đường xiên, đường xiên và hình chiếu
Luyện tập (trang 59-60 sgk Toán 7 Tập 2)
Bài 14 (trang 60 SGK Toán 7 tập 2): Đố: Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6 cm.
Lấy điểm M trên đường thẳng QR sao cho PM = 4,5cm. Có mấy điểm M như vậy?
Điểm M có nằm trên cạnh QR hay không? Tại sao?
Lời giải:
* Vẽ hình:
– Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6cm.
+ Vẽ đoạn thẳng QR = 6cm.
+ Vẽ cung tròn tâm Q và cung tròn tâm R bán kính 5cm. Hai cung tròn này cắt nhau tại P.
+ Nối PQ và PR ta được tam giác cần vẽ.
– Vẽ điểm M : Vẽ cung tròn tâm P bán kính 4,5cm cắt QR (nếu có) tại M.
* Kẻ đường cao PH của ΔPQR
Xét hai tam giác vuông tại H: ΔPHQ và ΔPHR có
PH chung
PQ = PR ( = 5cm)
⇒ ΔPHQ = ΔPHR (cạnh huyền – cạnh góc vuông)
⇒ HQ = HR (Hai cạnh tương ứng)
Mà HQ + HR = QR = 6 cm
+ ΔPHR vuông tại H có PR2= PH2+ HR2(định lí Py – ta – go)
⇒ PH2= PR2– HR2= 52– 32= 16 ⇒ PH = 4cm .
Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.
Vậy chắc chắn có đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.
+ Lại có : HM, HR lần lượt là hình chiếu của các đường xiên PM, PR trên đường thẳng QR.
Mà PM < PR ⇒ HM < HR = HQ (đường xiên nào lớn hơn thì hình chiếu lớn hơn).
⇒ M nằm giữa H và Q hoặc H và R
⇒ M nằm trên cạnh QP và có hai điểm M như vậy.