Xem toàn bộ tài liệu Lớp 7: tại đây
- Giải Sách Bài Tập Toán Lớp 7
- Sách Giáo Khoa Toán lớp 7 tập 1
- Sách Giáo Khoa Toán lớp 7 tập 2
- Sách Giáo Viên Toán Lớp 7 Tập 1
- Sách Giáo Viên Toán Lớp 7 Tập 2
- Vở Bài Tập Toán Lớp 7 Tập 1
- Vở Bài Tập Toán Lớp 7 Tập 2
Sách giải toán 7 Bài 5: Tính chất tia phân giác của một góc – Luyện tập (trang 70-71) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 7 Tập 2 Bài 5 trang 68: Dựa vào cách gấp hình, hãy so sánh các khoảng cách từ điểm M đến hai cạnh Ox, Oy.
Lời giải
Khoảng cách từ M đến Ox = Khoảng cách từ M đến Oy
Trả lời câu hỏi Toán 7 Tập 2 Bài 5 trang 69: Dựa vào hình 29, hãy viết giả thiết và kết luận của định lí 1.
Lời giải
– Giả thiết : Góc xOy có Oz là tia phân giác
MA ⊥ Ox tại A ; MB ⊥ Oy tại B
– Kết luận : MA = MB
Trả lời câu hỏi Toán 7 Tập 2 Bài 5 trang 69: Dựa vào hình 30, hãy viết giả thiết và kết luận của định lí 2.
Lời giải
– Giả thiết : M nằm bên trong góc xOy
MA ⊥ Ox tại A ; MB ⊥ Oy tại B
MA = MB
– Kết luận : OM là tia phân giác góc xOy
Bài 5: Tính chất tia phân giác của một góc
Bài 31 (trang 70 SGK Toán 7 tập 2): Hình 31 cho biết cách vẽ tia phân giác của góc xOy bằng thước hai lề:
Áp một lề của thước vào cạnh Ox, kẻ đường thẳng a theo lề kia.
Làm tương tự với cạnh Oy, ta kẻ được đường thẳng b.
Gọi M là giao điểm của a và b, ta có OM là tia phân giác của góc xOy.
Hãy chứng minh tia OM được vẽ như vậy đúng là tia phân giác của góc xOy.
(Gợi ý: Dựa vào bài tập 12 chứng minh các khoảng cách từ M đến Ox và đến Oy bằng nhau (do cùng bằng khoảng cách hai lề của chiếc thước) rồi áp dụng định lí 2)
Hình 31
Lời giải
(Từ bài tập 12 ta biết rằng: độ dài đường vuông góc giữa hai đường thẳng song song chính là khoảng cách giữa hai đường thẳng đó.)
Gọi A, B lần lượt là chân đường cao hạ từ M xuống Ox, Oy ⇒ MA, MB lần lượt là khoảng cách từ M đến Ox, Oy.
Theo cách vẽ bằng thước hai lề và từ bài tập 12 ta suy ra: MA = MB (cùng bằng khoảng cách hai lề của thước) hay điểm M cách đều hai cạnh của góc xOy.
Áp dụng định lý 2 suy ra: OM là tia phân giác của góc xOy.
Bài 5: Tính chất tia phân giác của một góc
Bài 32 (trang 70 SGK Toán 7 tập 2): Cho tam giác ABC. Chứng minh rằng giao điểm của hai tia phân giác của hai góc ngoài B1 và C1 (h.32) nằm trên tia phân giác của góc A.
Hình 32
Lời giải:
Gọi M là giao điểm của hai tia phân giác của hai góc ngoài B và C của ∆ABC.
Kẻ MH ⊥ AB; MI ⊥ BC; MK ⊥ AC (như hình vẽ)
(H ∈ tia AB, I ∈ BC, K ∈ tia AC)
Theo định lí 1: Điểm nằm trên tia phân giác của một góc thì cách đều hai cạnh của góc đó.
Ta có: MH = MI (Vì M thuộc phân giác của góc B ngoài )
MI = MK ( Vì M thuộc phân giác của góc C ngoài )
Suy ra: MH = MK (cùng bằng MI)
Dựa vào định lí 2: Điểm nằm bên trong góc và cách đều hai cạnh của góc thì nằm trên tia phân giác của góc đó.
⇒ M thuộc phân giác của góc BAC (đpcm).
Bài 5: Tính chất tia phân giác của một góc
Luyện tập (trang 70-71 sgk Toán 7 Tập 2)
Bài 33 (trang 70 SGK Toán 7 tập 2): Cho hai đường thẳng xx’, yy’ cắt nhau tại O.
a) Chứng minh hai tia phân giác Ot, Ot’ của một cặp góc kề bù tạo thành một góc vuông.
b) Chứng minh rằng: Nếu M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot’ thì M cách đều hai đường thẳng xx’ và yy’.
c) Chứng minh rằng: Nếu điểm M cách đều hai đường thẳng xx’, yy’ thì M thuộc đường thẳng Ot hoặc thuộc đường thẳng Ot’.
d) Khi M ≡ O thì khoảng cách từ M đến xx’ và yy’ bằng bao nhiêu?
e) Em có nhận xét gì về tập hợp các điểm cách đều hai đường thẳng cắt nhau xx’, yy’.
Hình 33
Lời giải
Vậy hai tia phân giác của hai góc kề bù tạo thành một góc vuông.
b) – TH1: M ∈ Ot
M ∈ Ot do Ot là phân giác của
⇒ M cách đều xx’, yy’.
Tương tự cho M thuộc tia đối của tia Ot.
– TH2: M ∈ Ot’
M ∈ Ot’ do Ot’ là phân giác của
⇒ M cách đều xx’, yy’.
Tương tự cho M thuộc tia đối của tia Ot’.
Vậy với mọi M thuộc đường thẳng Ot hoặc đường thẳng Ot’, M cách đều xx’ và yy’.
c) Ta có M luôn thuộc miền trong của một trong bốn góc:
Mà M cách đều xx’ và yy’ nên theo định lý 2 ta có:
+ Nếu M thuộc miền trong góc xOy ⇒ M thuộc tia Ot.
+ Nếu M thuộc miền trong góc xOy’ ⇒ M thuộc tia Ot’.
+ Nếu M thuộc miền trong góc y’Ox’ ⇒ M thuộc tia đối của tia Ot.
+ Nếu M thuộc miền trong góc x’Oy ⇒ M thuộc tia đối của tia Ot’ .
d) Khi M ≡ O thì khoảng cách từ M đến xx’, yy’ bằng 0.
e) Từ các câu trên ta có nhận xét: tập hợp tất cả các điểm cách đều hai đường thẳng cắt nhau xx’, yy’ thuộc hai đường thẳng vuông góc nhau lần lượt là phân giác của các góc tạo bởi hai đường thẳng cắt nhau đó.
Bài 5: Tính chất tia phân giác của một góc
Luyện tập (trang 70-71 sgk Toán 7 Tập 2)
Bài 34 (trang 71 SGK Toán 7 tập 2): Cho góc xOy khác góc bẹt. Trên tia Ox lấy hai điểm A và B, trên tia Oy lấy hai điểm C và D sao cho OA = OC, OB = OD. Gọi I là giao điểm của hai đoạn thẳng AD và BC. Chứng minh rằng:
a) BC = AD;
b) IA = IC, IB = ID;
c) Tia OI là tia phân giác của góc xOy.
Lời giải:
a) ΔAOD và ΔCOB có:
OA = OC (giả thiết)
Góc O chung
OD = OB (giả thiết)
⇒ ΔAOD = ΔCOB (c.g.c)
⇒ AD = BC (hai cạnh tương ứng)
b) – ΔAOD = ΔCOB
Lại có: OA = OC, OB = OD ⇒ OB – OA = OD – OC hay AB = CD.
– Xét ΔDIC và ΔBIA có:
CD = AB (chứng minh trên)
⇒ ΔDIC = ΔBIA (g.c.g)
⇒ IC = IA và ID = IB (các cặp cạnh tương ứng)
c) Ta có: ΔOIA và ΔOIC có
OI chung
IA = IC (chứng minh trên)
OA = OC (giả thiết)
ΔOIA = ΔOIC (c.c.c)
Bài 5: Tính chất tia phân giác của một góc
Luyện tập (trang 70-71 sgk Toán 7 Tập 2)
Bài 35 (trang 71 SGK Toán 7 tập 2): 35. Có mảnh sắt phẳng hình dạng một góc (h.34) và một chiếc thước thẳng có chia khoảng. Làm thế nào để vẽ được tia phân giác của góc này?
Gợi ý: Áp dụng bài tập 34.
Hình 34
Lời giải:
Gọi O là đỉnh của góc
⦁ Trên cạnh thứ nhất lấy hai điểm phân biệt A ; B
⦁ Trên cạnh thứ hai lấy hai điểm C ; D sao cho OA = OC, OB = OD
⦁ Xác định giao điểm I của BC và AD ; tia vẽ từ đỉnh O qua I chính là tia phân giác của góc đó.
(Phần chứng minh tương tự bài 34)