Xem toàn bộ tài liệu Lớp 7: tại đây
- Giải Sách Bài Tập Toán Lớp 7
- Sách Giáo Khoa Toán lớp 7 tập 1
- Sách Giáo Khoa Toán lớp 7 tập 2
- Sách Giáo Viên Toán Lớp 7 Tập 1
- Sách Giáo Viên Toán Lớp 7 Tập 2
- Vở Bài Tập Toán Lớp 7 Tập 1
- Vở Bài Tập Toán Lớp 7 Tập 2
Sách giải toán 7 Bài 7: Tính chất ba đường phân giác của tam giác – Luyện tập (trang 73) giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Trả lời câu hỏi Toán 7 Tập 2 Bài 6 trang 72: Cắt một tam giác bằng giấy. Gấp hình xác định ba đường phân giác của nó. Trải tam giác ra, quan sát và cho biết: Ba nếp gấp có đi qua cùng một điểm không.
Lời giải
Ba nếp gấp có đi qua cùng một điểm
Trả lời câu hỏi Toán 7 Tập 2 Bài 6 trang 72: Dựa vào hình 37, hãy cho biết giả thiết và kết luận của định lý.
Lời giải
– Giả thiết : ΔABC có I là giao điểm ba đường phân giác
IH, IK, IL lần lượt là khoảng cách từ I đến BC, AC, AB
– Kết luận : IH = IK = IK
Bài 6: Tính chất ba đường phân giác của tam giác
Bài 36 (trang 72 SGK Toán 7 tập 2): Cho tam giác DEF, điểm I nằm trong tam giác và cách đều ba cạnh của nó. Chứng minh I là điểm chung của ba đường phân giác của tam giác DEF.
Lời giải:
Gọi IH, IK, IL lần lượt là khoảng cách từ I đến EF, DF, DE.
Theo đề bài, điểm I cách đều ba cạnh của ΔDEF ⇒ IH = IK = IL
IL = IK ⇒ I cách đều hai cạnh của góc D ⇒ I nằm trên đường phân giác của góc D.
IH = IK ⇒ I cách đều hai cạnh của góc F ⇒ I nằm trên đường phân giác của góc F.
IH = IL ⇒ I cách đều hai cạnh của góc E ⇒ I nằm trên đường phân giác của góc E.
Từ 3 điều trên suy ra I là điểm chung của ba đường phân giác của tam giác DEF.
Bài 6: Tính chất ba đường phân giác của tam giác
Bài 37 (trang 72 SGK Toán 7 tập 2): Nêu cách vẽ điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau. Vẽ hình minh họa.
Lời giải:
Điểm K ở trong tam giác MNP mà các khoảng cách từ K đến ba cạnh của tam giác đó bằng nhau Theo định lí ⇒ K là giao điểm của các đường phân giác trong tam giác MNP.
Vì vậy ta chỉ cần vẽ phân giác của hai trong ba góc của ∆MNP.
Cách vẽ :
– Vẽ ΔMNP
– Vẽ đường phân giác của hai góc M và N : MA là phân giác góc M ; NB là phân giác góc B
Chúng cắt nhau tại K
– K là điểm cần vẽ
Bài 6: Tính chất ba đường phân giác của tam giác
Bài 38 (trang 73 SGK Toán 7 tập 2): Cho hình 38.
a) Tính góc KOL.
b) Kẻ tia IO, hãy tính góc KIO.
c) Điểm O có cách đều ba cạnh của tam giác IKL không? Tại sao?
Lời giải:
a) Áp dụng định lý tổng ba góc trong tam giác IKL ta có:
OK, OL là phân giác của các góc K, L nên
Áp dụng định lý tổng ba góc trong tam giác OKL có:
b) Ta có : ba đường phân giác trong tam giác đồng quy.
Mà hai đường phân giác KO, LO cắt nhau tại O
c) O là giao điểm ba đường phân giác của ΔIKL
Áp dụng định lí 3 đường phân giác
Vậy O cách đều ba cạnh của tam giác IKL.
Bài 6: Tính chất ba đường phân giác của tam giác
Luyện tập (trang 73 sgk Toán 7 Tập 2)
Bài 39 (trang 73 SGK Toán 7 tập 2): Cho hình 39.
a) Chứng minh ΔABD = ΔACD
b) So sánh góc DBC và góc DCB.
Hình 39
Lời giải:
a) Căn cứ vào các kí hiệu đã cho trên hình của bài 39 ta có:
ΔABD và ΔACD có:
AB = AC
AD là cạnh chung
⇒ ΔABD = ΔACD (c.g.c)
b) Vì ΔABD = ΔACD (chứng minh câu a)
⇒ BD = CD (hai cạnh tương ứng)
⇒ ΔBCD cân tại D
Bài 6: Tính chất ba đường phân giác của tam giác
Luyện tập (trang 73 sgk Toán 7 Tập 2)
Bài 40 (trang 73 SGK Toán 7 tập 2): Cho tam giác ABC cân tại A. Gọi G là trọng tâm, I là điểm nằm trong tam giác và cách đều ba cạnh của tam giác đó. Chứng minh ba điểm A, G, I thẳng hàng.
Lời giải:
– Gọi M, N là trung điểm CA và BA.
ΔABC cân tại A có BM, CN là đường trung tuyến ứng với cạnh AC, AB.
⇒ BM = CN ( chứng minh ở bài 26)
Mà
⇒ GB = GC
– ΔAGB và ΔAGC có
AG chung
AB = AC (do ΔABC cân tại A)
GB = GC (chứng minh trên)
⇒ ΔAGB = ΔAGC (c.c.c)
– Theo đề bài I cách đều ba cạnh của tam giác
Dựa vào chứng minh bài 36 ⇒ I là điểm chung của ba đường phân giác
⇒ I thuộc tia phân giác của
Vì G, I cùng thuộc tia phân giác của
Bài 6: Tính chất ba đường phân giác của tam giác
Luyện tập (trang 73 sgk Toán 7 Tập 2)
Bài 41 (trang 73 SGK Toán 7 tập 2): Hỏi trọng tâm của một tam giác đều có cách đều ba cạnh của nó hay không? Vì sao?
Lời giải:
– Gọi G là trọng tâm ΔABC đều
AM, BN, CP là các đường trung tuyến của ΔABC
Theo tính chất trọng tâm tam giác :
Vì ΔABC đều nên ba trung tuyến AM = BN = CP (áp dụng chứng minh bài 29)
Suy ra: GA = GB = GC
Và AM – GA = BN – GB = CP – GC hay GM = GN = GP
– ΔANG và ΔCNG
GN chung
GA = GC (chứng minh trên)
NA = NC ( N là trung điểm AC)
⇒ ΔANG = ΔCNG (c.c.c)
⇒ GN ⊥ AC tức là GN là khoảng cách từ G đến AC.
Chứng minh tương tự GM, GP là khoảng cách từ G đến BC, AB.
– Mà GM = GN = GP (chứng minh trên)
Vậy G cách đều ba cạnh của tam giác ABC.
Bài 6: Tính chất ba đường phân giác của tam giác
Luyện tập (trang 73 sgk Toán 7 Tập 2)
Bài 42 (trang 73 SGK Toán 7 tập 2): Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
Gợi ý: Trong ΔABC, nếu AD là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn DA, sao cho DA1 = AD.
Lời giải:
– Giả sử ∆ABC có AD là trung tuyến đồng thời là tia phân giác của góc BAC của ΔABC
Ta cần chứng minh ∆ABC cân tại A.
Kéo dài AD một đoạn DA1 = AD.
– ∆ADB và ∆A1DC có
AD = DA1 (cách vẽ)
BD = CD (do D là trung điểm BC)
⇒ ∆ADB = ∆A1DC (c.g.c)
⇒
⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)
Từ (1) và (2) ⇒ AB = AC.
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
Bài 6: Tính chất ba đường phân giác của tam giác
Luyện tập (trang 73 sgk Toán 7 Tập 2)
Bài 42 (trang 73 SGK Toán 7 tập 2): Chứng minh định lí: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
Gợi ý: Trong ΔABC, nếu AD là đường trung tuyến vừa là đường phân giác thì kéo dài AD một đoạn DA, sao cho DA1 = AD.
Lời giải:
– Giả sử ∆ABC có AD là trung tuyến đồng thời là tia phân giác của góc BAC của ΔABC
Ta cần chứng minh ∆ABC cân tại A.
Kéo dài AD một đoạn DA1 = AD.
– ∆ADB và ∆A1DC có
AD = DA1 (cách vẽ)
BD = CD (do D là trung điểm BC)
⇒ ∆ADB = ∆A1DC (c.g.c)
⇒
⇒ ∆ACA1 cân tại C ⇒ AC = A1C (2)
Từ (1) và (2) ⇒ AB = AC.
Vậy ∆ABC cân tại A
Tức là: Nếu tam giác có một đường trung tuyến đồng thời là đường phân giác thì tam giác đó là một tam giác cân.
Bài 6: Tính chất ba đường phân giác của tam giác
Luyện tập (trang 73 sgk Toán 7 Tập 2)
Bài 43 (trang 73 SGK Toán 7 tập 2): Đố: Có hai con đường cắt nhau và cùng cắt một con sông tại hai địa điểm khác nhau (h.40).
Hãy tìm một địa điểm để xây dựng một đài quan sát sao cho khoảng cách từ đó đến hai con đường và đến bờ sông bằng nhâu.
Có tất cả mấy địa điểm như vậy?
Lời giải:
Hai con đường cắt nhau và cùng cắt một con sông tạo thành tam giác ABC.
Vì khoảng cách từ điểm cần xây đến hai con đường và bờ sông là như nhau nên địa điểm để xây dựng đài quan sát thỏa mãn đề bài có thể là
– TH1: giao điểm của ba đường phân giác trong của tam giác ABC.
– TH2 : giao điểm M của hai tia phân giác ngoài và một tia phân giác trong. Ta có ba điểm M như vậy.
Vậy có tất cả 4 điểm có thể xây dựng đài quan sát thỏa mãn điều kiện.