Chương 9: Quan hệ giữa các yếu tố trong một tam giác

Xem toàn bộ tài liệu Lớp 7 – Kết Nối Tri Thức: tại đây

Mở đầu trang 66 Toán 7 Tập 2:

Sau bài học này chúng ta sẽ giải quyết được câu hỏi trên như sau:

Lời giải:

Tổng độ dài dây dẫn điện cần sử dụng để kéo điện từ cột điện A đến cột điện B thông qua cột điện C là AC + CB.

Với C bất kỳ ta có AB ≤ AC + CB.

Do đó AC + CB nhỏ nhất khi AC + CB = AB.

AC + CB = AB khi C nằm giữa A và B.

Vậy C nằm giữa A và B thì tổng độ dài dây dẫn điện cần sử dụng là nhỏ nhất.

Lời giải bài tập Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác hay, chi tiết khác:

Luyện tập trang 68 Toán 7 Tập 2:

a) 5 cm, 4 cm, 6 cm.

b) 3 cm, 6 cm, 10 cm.

Lời giải:

a) Ta có 6 < 5 + 4; 4 < 5 + 6 và 5 < 4 + 6 nên ba độ dài 5 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của tam giác.

Dùng thước và compa ta vẽ được hình như sau:

b) Ta có 3 + 6 < 10 nên ba độ dài 3 cm, 6 cm, 10 cm không là độ dài ba cạnh của tam giác.

Lời giải bài tập Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác hay, chi tiết khác:

Bài 9.10 trang 69 Toán 7 Tập 2: Cho các bộ ba đoạn thẳng có độ dài như sau:

a) 2 cm, 3 cm, 5 cm.

b) 3 cm, 4 cm, 6 cm.

c) 2 cm, 4 cm, 5 cm.

Lời giải:

a) Ta có 2 + 3 = 5 nên bộ ba đoạn thẳng có độ dài 2 cm, 3 cm, 5 cm không phải độ dài ba cạnh của tam giác.

b) Ta có 3 < 4 + 6; 4 < 3 + 6 và 6 < 3 + 4 nên bộ ba đoạn thẳng có độ dài 3 cm, 4 cm, 6 cm có thể là độ dài ba cạnh của tam giác.

Sử dụng thước thẳng và compa, ta có hình như sau:

c) Ta có 2 < 4 + 5 và 4 < 2 + 5 và 5 < 2 + 4 nên bộ ba đoạn thẳng có độ dài 2 cm, 4 cm, 5 cm có thể là độ dài ba cạnh của tam giác.

Sử dụng thước thẳng và compa, ta có hình như sau:

Lời giải bài tập Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác hay, chi tiết khác:

Bài 9.13 trang 69 Toán 7 Tập 2: Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng AD nhỏ hơn nửa chu vi tam giác ABC

Lời giải:

Trong tam giác ABD, theo bất đẳng thức tam giác ta có:

AD > AB + BD (1)

Trong tam giác ACD, theo bất đẳng thức tam giác ta có:

AD > AC + CD (2)

Từ (1) và (2) ta có:

AD + AD > AB + BD + AC + CD

Do đó 2AD > AB + AC + (BD + CD)

Hay 2AD > AB + AC + BC

Suy ra AD > (AB + AC + BC).

Mà chu vi tam giác ABC là AB + AC + BC.

Nên AD nhỏ hơn nửa chu vi tam giác ABC.

Vậy AD nhỏ hơn nửa chu vi tam giác ABC.

Lời giải bài tập Toán 7 Bài 33: Quan hệ giữa ba cạnh của một tam giác hay, chi tiết khác:

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 997

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống