Xem toàn bộ tài liệu Lớp 7: tại đây
- Giải Sách Bài Tập Toán Lớp 7
- Sách Giáo Khoa Toán lớp 7 tập 1
- Sách Giáo Khoa Toán lớp 7 tập 2
- Sách Giáo Viên Toán Lớp 7 Tập 1
- Sách Giáo Viên Toán Lớp 7 Tập 2
- Vở Bài Tập Toán Lớp 7 Tập 1
- Vở Bài Tập Toán Lớp 7 Tập 2
Sách giải toán 7 Luyện tập trang 47 giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 7 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 8: Cộng, trừ đa thức một biến
Luyện tập (trang 46 sgk Toán 7 Tập 2)
Bài 49 (trang 46 SGK Toán 7 tập 2): Hãy tìm bậc của mỗi đa thức sau:
M = x2 – 2xy + 5x2 – 1
N = x2y2 – y2 + 5x2 – 3x2y + 5
Lời giải:
a) Rút gọn đa thức M ta có :
M = x2 – 2xy + 5x2 – 1 = (x2+ 5x2) – 2xy – 1 = 6x2 – 2xy – 1
Sau khi rút gọn, M có các hạng tử là:
6x2 có bậc 2
– 2xy có bậc 2
– 1 có bậc 0
Bậc của đa thức là bậc của hạng tử có bậc cao nhất
⇒ Đa thức M = x2 – 2xy + 5x2 – 1 có bậc 2.
b) N = x2y2 – y2 + 5x2 – 3x2y + 5 có các hạng tử là
x2y2 có bậc 4 (vì biến x có bậc 2, biến y có bậc 2, tổng là 2 + 2 = 4)
– y2 có bậc 2
5x2 có bậc 2
– 3x2y có bậc 3 (vì biến x có bậc 2, biến y có bậc 1, tổng là 2 + 1 = 3)
5 có bậc 0
Bậc của đa thức là bậc của hạng tử có bậc cao nhất.
⇒ Đa thức N = x2y2 – y2 + 5x2 – 3x2y + 5 có bậc 4
Bài 8: Cộng, trừ đa thức một biến
Luyện tập (trang 46 sgk Toán 7 Tập 2)
Bài 50 (trang 46 SGK Toán 7 tập 2): Cho các đa thức:
N = 15y3 + 5y2 – y5 – 5y2 – 4y3 – 2y
M = y2 + y3 – 3y + 1 – y2 + y5 – y3 + 7y5
a) Thu gọn các đa thức trên.
b) Tính N + M và N – M.
Lời giải:
a) N = 15y3 + 5y2 – y5 – 5y2 – 4y3 – 2y
= –y5 + (15y3 – 4y3) + (5y2 – 5y2) – 2y
= –y5 + 11y3 + 0 – 2y
= – y5 + 11y3 – 2y.
Và M = y2 + y3 – 3y + 1 – y2 + y5 – y3 + 7y5
= (y5 + 7y5) + (y3 – y3) + (y2 – y2) – 3y + 1
= 8y5 + 0 + 0 – 3y + 1.
= 8y5 – 3y + 1.
b) Ta đặt và thực hiện các phép tính N + M và N – M có
Vậy: N – M = – 9y5 + 11y3 + y – 1 ; N + M = 7y5 + 11y3 – 5y + 1.
Bài 8: Cộng, trừ đa thức một biến
Luyện tập (trang 46 sgk Toán 7 Tập 2)
Bài 51 (trang 46 SGK Toán 7 tập 2): Cho hai đa thức:
P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1.
a) Sắp xếp các hạng tử của mỗi đa thức theo lũy thừa tăng của biến.
b) Tính P(x) + Q(x) và P(x) – Q(x).
Lời giải:
a) P(x) = 3x2 – 5 + x4 – 3x3 – x6 – 2x2 – x3
= – x6 + x4 + (– 3x3 – x3) + (3x2 – 2x2) – 5
= – x6 + x4 – 4x3 + x2 – 5.
= – 5+ x2 – 4x3 + x4 – x6
Và Q(x) = x3 + 2x5 – x4 + x2 – 2x3 + x –1
= 2x5 – x4 + (x3 – 2x3) + x2 + x –1
= 2x5 – x4 – x3 + x2 + x –1.
= –1+ x + x2 – x3 – x4 + 2x5
b) Ta đặt và thực hiện phép tính P(x) + Q(x) và P(x) – Q(x) có
Vậy: P(x) + Q(x) = – 6 + x + 2x2 – 5x3 + 2x5 – x6
P(x) – Q(x) = – 4 – x – 3x3 + 2x4 – 2x5 – x6
Bài 8: Cộng, trừ đa thức một biến
Luyện tập (trang 46 sgk Toán 7 Tập 2)
Bài 52 (trang 46 SGK Toán 7 tập 2): Tính giá trị của đa thức P(x) = x2 – 2x – 8 tại: x = -1; x = 0 và x = 4.
Lời giải:
Thay lần lượt các giá trị x vào đa thức P(x) ta tính được:
P(–1) = (–1)2 – 2(–1) – 8 = 1 + 2 – 8 = –5
P(0) = 02 – 2.0 – 8 = –8
P(4) = 42 – 2.4 – 8 = 16 – 8 – 8 = 0
Bài 8: Cộng, trừ đa thức một biến
Luyện tập (trang 46 sgk Toán 7 Tập 2)
Bài 53 (trang 46 SGK Toán 7 tập 2): Cho các đa thức:
P(x) = x5 – 2x4 + x2 – x + 1
Q(x) = 6 – 2x + 3x3 + x4 – 3x5
Tính P(x) – Q(x) và Q(x) – P(x). Có nhận xét gì về các hệ số của hai đa thức tìm được?
Lời giải:
Sắp xếp lại các hạng tử của Q(x) ta có :
Q(x) = –3x5 + x4 + 3x3 – 2x + 6.
Đặt và thực hiện các phép tính P(x) – Q(x) và Q(x) – P(x), ta có
Nhận xét : Các hệ số tương ứng của P(x) – Q(x) và Q(x) – P(x) đối nhau.
Chú ý : Ta gọi hai đa thức có các hệ số tương ứng đối nhau là đa thức đối nhau.