Phần Đại số – Chương 2: Hàm số bậc nhất

Xem toàn bộ tài liệu Lớp 9: tại đây

Sách giải toán 9 Bài 3: Đồ thị của hàm số y = ax + b giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:

Trả lời câu hỏi Toán 9 Tập 1 Bài 3 trang 49: Biểu diễn các điểm sau trên cùng một mặt phẳng tọa độ:

A(1; 2),        B(2; 4)        C(3; 6),

A’(1; 2 + 3),        B’(2; 4 + 3),        C’(3; 6 + 3).

Lời giải

Trả lời câu hỏi Toán 9 Tập 1 Bài 3 trang 49: Tính giá trị y tương ứng của các hàm số y = 2x và y = 2x + 3 theo giá trị đã cho của biến x rồi điền vào bảng sau:

Lời giải

Trả lời câu hỏi Toán 9 Tập 1 Bài 3 trang 51: Vẽ đồ thị của các hàm số sau:

a) y = 2x – 3;

b) y = -2x + 3.

Lời giải

a) y = 2x – 3

Bảng giá trị

x 0 3/2
y = 2x – 3 -3 0

b) y = -2x – 3

Bảng giá trị

x 0 (-3)/2
y = -2x – 3 -3 0

Bài 15 (trang 51 SGK Toán 9 Tập 1): a) Vẽ đồ thị của các hàm số

trên cùng một mặt phẳng tọa độ.

b) Bốn đường thẳng trên cắt nhau tạo thành tứ giác OABC (O là gốc tọa độ). Tứ giác OABC có phải là hình bình hành không? Vì sao ?

Lời giải:

a)

– Với hàm số y = 2x: cho x = 1 => y = 2.1 = 2 ta được M(1; 2).

– Với hàm số y = 2x + 5:

    cho x = -2,5 => y = 2(-2,5) + 5 = 0 ta được E(-2,5; 0)

    cho x = 0 => y = 5 ta được B(0; 5)

b) Bốn đường thẳng đã cho cắt nhau tại các điểm O, A.

Vì đường thẳng y = 2x + 5 song song với đường thẳng y = 2x,

=> tứ giác OABC là hình bình hành (có hai cặp cạnh song song).

Bài 16 (trang 51 SGK Toán 9 Tập 1): a) Vẽ đồ thị của các hàm số y = x và y = 2x + 2 trên cùng một mặt phẳng tọa độ.

b) Gọi A là giao điểm của hai đồ thị nói trên, tìm tọa độ điểm A.

c) Vẽ qua điểm B(0; 2) một đường thẳng song song với trục Ox, cắt đường thẳng y = x tại điểm C. Tìm tọa độ điểm C rồi tính diện tích tam giác ABC (đơn vị đo trên các trục tọa độ là xentimet)

Lời giải:

a) Vẽ đường thẳng qua O(0; 0) và điểm M(1; 1) được đồ thị hàm số y = x.

Vẽ đường thẳng qua B(0; 2) và A(-2; -2) được đồ thị hàm số y = 2x + 2.

b) Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

        2x + 2 = x

=> x = -2 => y = -2

Suy ra tọa độ giao điểm là A(-2; -2).

c) Qua B(0; 2) vẽ đường thẳng song song với Ox, đường thẳng này có phương trình y = 2 và cắt đường thẳng y = x tại C.

– Tọa độ điểm C:

Hoành độ giao điểm của 2 đồ thị hàm số là nghiệm của phương trình:

    x = 2 => y = 2 => tọa độ C(2; 2)

– Tính diện tích tam giác ABC: (với BC là đáy, AE là chiều cao tương ứng với đáy BC)

Bài 17 (trang 51, 52 SGK Toán 9 Tập 1): a) Vẽ đồ thị của các hàm số y = x + 1 và y = -x +3 trên cùng một mặt phẳng tọa độ.

b) Hai đường thẳng y = x + 1 và y = -x + 3 cắt nhau tại C và cắt trục Ox theo thứ tự A và B. Tìm tọa độ các điểm A, B, C.

c) Tính chu vi và diện tích của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimet)

Lời giải:

a) – Với hàm số y = x + 1:

    Cho x = 0 => y = 1 ta được M(0; 1).

    Cho y = 0 => x + 1 = 0 => x = -1 ta được B(-1; 0).

Nối MB ta được đồ thị hàm số y = x + 1.

– Với hàm số y = -x + 3:

    Cho x = 0 => y = 3 ta được E(0; 3).

    Cho y = 0 => -x + 3 = 0 => x = 3 ta được A(3; 0).

Nối EA ta được đồ thị hàm số y = -x + 3.

b) Từ hình vẽ ta có:

– Đường thẳng y = x + 1 cắt Ox tại B(-1; 0).

– Đường thẳng y = -x + 3 cắt Ox tại A(3; 0).

– Hoành độ giao điểm C của 2 đồ thị hàm số y = x + 1 và y = -x + 3 là nghiệm phương trình:

    x + 1 = -x + 3

=> x = 1 => y = 2

=> Tọa độ C(1; 2)

c) Ta có: AB = 3 + 1 = 4

Bài 18 (trang 51 SGK Toán 9 Tập 1): a) Biết rằng với x = 4 thì hàm số y = 3x + b có giá trị là 11. Tìm b. Vẽ đồ thị của hàm số với giá trị B vừa tìm được.

b) Biết rằng đồ thị của hàm số y = ax + 5 đi qua điểm A(-1; 3). Tìm a. Vẽ đồ thị hàm số với giá trị a tìm được

Lời giải:

a) Thay x = 4 và y = 11 vào y = 3x + b ta được:

    11 = 3.4 + b = 12 + b

=> b = 11 – 12 = -1

Ta được hàm số y = 3x – 1

– Cho x = 0 => y = -1 được A(0; -1)

– Cho x = 1 => y = 2 được B(1; 2).

Nối A, B ta được đồ thị hàm số y = 3x – 1.

b) Thay tọa độ điểm A(-1; 3) vào phương trình y = ax + 5 ta có:

    3 = a(-1) + 5

=> a = 5 – 3 = 2

Ta được hàm số y = 2x + 5.

– Cho x = -2 => y = 1 được C(-2; 1)

– Cho x = -1 => y = 3 được D(-1; 3)

Nối C, D ta được đồ thị hàm số y = 2x + 5.

Bài 19 (trang 52 SGK Toán 9 Tập 1): Đồ thị của hàm số y = √3 x + √3 được vẽ bằng compa và thước thẳng (h.8).

Hãy thực hiện cách vẽ đó rồi nêu lại cách thực hiện.

Áp dụng: Vẽ đồ thị của hàm số y = √5 x + √5 bằng compa và thước thẳng.

Hướng dẫn: Tìm điểm trên trục tung có tung độ bằng √5.

Lời giải:

a) Cho x = 0 => y = √3 ta được (0; √3).

Cho y = 0 => √3 x + √3 = 0 => x = -1 ta được (-1; 0).

Như vậy để vẽ được đồ thị hàm số y = √3 x + √3 ta phải xác định được điểm √3 trên Oy.

Các bước vẽ đồ thị y = √3 x + √3 :

   + Dựng điểm A(1; 1) được OA = √2.

   + Dựng điểm biểu diễn √2 trên Ox: Quay một cung tâm O, bán kính OA cắt tia Ox, được điểm biểu diễn √2.

   + Dựng điểm B(√2; 1) được OB = √3.

   + Dựng điểm biểu diễn √2. Trên trục Oy: Quay một cung tâm O, bán kính OB cắt tia Oy, được điểm biểu diễn √3

   + Vẽ đường thẳng qua điểm biểu diễn √3 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √3 x + √3.

b) Áp dụng vẽ đồ thị hàm số y = √5 x + √5

– Cho x = 0 => y = √5 ta được (0; √5).

– Cho y = 0 => √5 x + √5 = 0 => x = -1 ta được (-1; 0).

Ta phải tìm điểm trên trục tung có tung độ bằng √5.

Cách vẽ:

   + Dựng điểm A(2; 1) ta được OA = √5.

   + Dựng điểm biểu diễn √5 trên trục Oy. Quay một cung tâm O, bán kính OA cắt tia Oy, được điểm biểu diễn √5. Vẽ đường thẳng qua điểm biểu diễn √5 trên Oy và điểm biểu diễn -1 trên Ox ta được đồ thị hàm số y = √5 x + √5.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1180

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống