Xem toàn bộ tài liệu Lớp 9: tại đây
- Sách Giáo Khoa Toán lớp 9 tập 1
- Sách Giáo Khoa Toán lớp 9 tập 2
- Giải Sách Bài Tập Toán Lớp 9
- Sách Giáo Viên Toán Lớp 9 Tập 1
- Sách Giáo Viên Toán Lớp 9 Tập 2
- Sách Bài Tập Toán Lớp 9 Tập 1
- Sách Bài Tập Toán Lớp 9 Tập 2
Sách giải toán 9 Luyện tập trang 129 giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu
Luyện tập (trang 126 sgk Toán 9 Tập 2)
Bài 35 (trang 126 SGK Toán 9 tập 2): Một cái bồn chứa xăng gồm hai nửa hình cầu và một hình trụ (h.110).
Hình 110
Lời giải
Thể tích cần tính gồm một hình trụ và hai nửa hình cầu.
– Hình cầu có đường kính d = 1,8m ⇒ bán kính R = 0,9m
– Bán trụ có bán kính đáy bằng bán kính hình cầu R = 0,9m; chiều cao h = 3,62m.
Thể tích hình trụ: V1 = π.R2.h ≈ 9,21 (m3).
Thể tích hai nửa hình cầu:
Thể tích bồn chứa xăng: V = V1 + V2 ≈ 12,26(m3).
Kiến thức áp dụng
Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu
Luyện tập (trang 126 sgk Toán 9 Tập 2)
Bài 36 (trang 126 SGK Toán 9 tập 2): Một chi tiết máy gồm một hình trụ và hai nửa hình cầu với các kích thước đã cho trên hình 111 (đơn vị: cm).
a) Tìm một hệ thức giữa x và h khi AA’ có độ dài không đổi và bằng 2a.
b) Với điều kiện ở a), hãy tính diện tích bề mặt và thể tích của chi tiết máy theo x và a.
Hình 111
Lời giải
a) Ta có: AA’ = AO + OO’ + O’A’
hay 2a = x + h + x
hay 2x + h = 2a.
b) Diện tích cần tính gồm diện tích xung quanh của hình trụ có bán kính đáy là x, chiều cao là h và diện tích mặt cầu có bán kính là x.
Kiến thức áp dụng
Bài 3: Hình cầu. Diện tích mặt cầu và thể tích hình cầu
Luyện tập (trang 126 sgk Toán 9 Tập 2)
Bài 37 (trang 126 SGK Toán 9 tập 2): Cho nửa đường tròn tâm O, đường kính AB = 2R, Ax và By là hai tiếp tuyến với nửa đường tròn tại A và B. Lấy trên tia Ax điểm M rồi vẽ tiếp tuyến MP cắt By tại N.
a) Chứng minh rằng MON và APB là hai tam giác vuông đồng dạng.
b) Chứng minh AM.BN = R2
c) Tính tỉ số
d) Tính thể tích của hình do nửa hình tròn APB quay quanh AB sinh ra.
Lời giải
a) Ta có OM, ON lần lượt là tia phân giác của AOP, BOP (tính chất của hai tiếp tuyến cắt nhau).
Mà AOP kề bù với BOP nên suy ra OM vuông góc với ON.
Vậy ΔMON vuông tại O.