Xem toàn bộ tài liệu Lớp 9: tại đây
- Sách Giáo Khoa Toán lớp 9 tập 1
- Sách Giáo Khoa Toán lớp 9 tập 2
- Giải Sách Bài Tập Toán Lớp 9
- Sách Giáo Viên Toán Lớp 9 Tập 1
- Sách Giáo Viên Toán Lớp 9 Tập 2
- Sách Bài Tập Toán Lớp 9 Tập 1
- Sách Bài Tập Toán Lớp 9 Tập 2
Sách giải toán 9 Luyện tập trang 49-50 giúp bạn giải các bài tập trong sách giáo khoa toán, học tốt toán 9 sẽ giúp bạn rèn luyện khả năng suy luận hợp lý và hợp logic, hình thành khả năng vận dụng kết thức toán học vào đời sống và vào các môn học khác:
Bài 5: Công thức nghiệm thu gọn
Luyện tập (trang 49-50 sgk Toán 9 Tập 2)
Bài 20 (trang 49 SGK Toán 9 tập 2): Giải các phương trình:
a) 25x2 – 16 = 0;
b) 2x2 + 3 = 0;
c) 4,2x2 + 5,46x = 0;
d) 4x2 – 2√3.x = 1 – √3.
Lời giải
Phương trình vô nghiệm vì x2 ≥ 0 với mọi x.
c) 4,2x2 + 5,46x = 0
⇔ x.(4,2x + 5,46) = 0
⇔ x = 0 hoặc 4,2x + 5,46 = 0
+ 4,2x + 5,46 = 0 ⇔
Vậy phương trình có hai nghiệm x1 = 0 và
d) 4x2 – 2√3 x = 1 – √3.
⇔ 4x2 – 2√3 x – 1 + √3 = 0
Có a = 4; b’ = -√3; c = -1 + √3;
Δ’ = b’2 – ac = (-√3)2 – 4(-1 + √3) = 7 – 4√3 = 4 – 2.2.√3 + (√3)2 = (2 – √3)2.
Phương trình có hai nghiệm phân biệt:
Kiến thức áp dụng
Bài 5: Công thức nghiệm thu gọn
Luyện tập (trang 49-50 sgk Toán 9 Tập 2)
Bài 21 (trang 49 SGK Toán 9 tập 2): Giải vài phương trình của An Khô-va-ri-zmi (xem Toán 7, Tập 2, tr.26):
Lời giải
a) x2 = 12x + 288
⇔ x2 – 12x – 288 = 0
Có a = 1; b’ = -6; c = -288; Δ’ = b’2 – ac = (-6)2 – 1.(-288) = 324 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x1 = 24 và x2 = -12.
b)
⇔ x2 + 7x = 228
⇔ x2 + 7x – 228 = 0
Có a = 1; b = 7; c = -228; Δ = b2 – 4ac = 72 – 4.1.(-228) = 961 > 0
Phương trình có hai nghiệm:
Vậy phương trình có hai nghiệm x1 = 12 và x2 = -19.
Kiến thức áp dụng
Bài 5: Công thức nghiệm thu gọn
Luyện tập (trang 49-50 sgk Toán 9 Tập 2)
Bài 22 (trang 49 SGK Toán 9 tập 2): Không giải phương trình, hãy cho biết mỗi phương trình sau có bao nhiêu nghiệm?
Lời giải
a) Phương trình 15x2 + 4x – 2005 = 0 có a = 15; c = -2005 trái dấu
⇒ Phương trình có hai nghiệm phân biệt.
b) Phương trình
⇒ Phương trình có hai nghiệm phân biệt.
Kiến thức áp dụng
Bài 5: Công thức nghiệm thu gọn
Luyện tập (trang 49-50 sgk Toán 9 Tập 2)
Bài 23 (trang 50 SGK Toán 9 tập 2): Rada của một máy bay trực thăng the dõi chuyển động của ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô they đổi phụ thuộc vào thời gian bởi công thức:
v = 3t2 -30t + 135
(t tính bằng phút, v tính bằng km/h)
a) Tính vận tốc của ôtô khi t = 5 phút.
b) Tính giá trị của t khi vận tốc ôtô bằng 120km/h (làm tròn kết quả đến chữ số thập phân thứ hai).
Lời giải
a) Tại t = 5, ta có: v = 3.52 – 30.5 + 135 = 60 (km/h)
b) Khi v = 120 km/h
⇔ 3t2 – 30t + 135 = 120
⇔ 3t2 – 30t + 15 = 0
Có a = 3; b’ = -15; c = 15; Δ’ = b’2 – ac = (-15)2 – 3.15 = 180
Phương trình có hai nghiệm phân biệt
Vì rada quan sát chuyển động của ô tô trong 10 phút nên t1 và t2 đều thỏa mãn.
Vậy tại t = 9,47 phút hoặc t = 0,53 phút thì vận tốc ô tô bằng 120km/h.
Bài 5: Công thức nghiệm thu gọn
Luyện tập (trang 49-50 sgk Toán 9 Tập 2)
Bài 24 (trang 50 SGK Toán 9 tập 2): Cho phương trình (ẩn x) x2 – 2(m – 1)x + m2 = 0.
a) Tính Δ’.
b) Với giá trị nào của m thì phương trình có hai nghiệm phân biệt? Có nghiệm kép? Vô nghiệm.
Lời giải
a) Phương trình x2 – 2(m – 1)x + m2 = 0 (1)
Có a = 1; b’ = -(m – 1); c = m2
⇒ Δ’ = b’2 – ac = (1 – m)2 – 1.m2 = 1 – 2m + m2 – m2 = 1 – 2m.
b) Phương trình (1):
+ Vô nghiệm ⇔ Δ’ < 0 ⇔ 1 – 2m < 0 ⇔ 2m > 1 ⇔ m >
+ Có nghiệm kép ⇔ Δ’ = 0 ⇔ 1 – 2m = 0 ⇔ m =
+ Có hai nghiệm phân biệt ⇔ Δ’ > 0 ⇔ 1 – 2m > 0 ⇔ 2m < 1 ⇔ m <
Vậy: Phương trình (1) có hai nghiệm phân biệt khi m <
Kiến thức áp dụng