Xem toàn bộ tài liệu Lớp 9: tại đây
1. So sánh độ dài của đường kính và dây.
Trong các dây của một đường tròn, dây lớn nhất là đường kính.
Ví dụ: Gọi AB là một dây bất kỳ của đường tròn (O; R). Chứng minh rằng AB ≤ 2R
+ Trường hợp 1: AB là đường kính
⇒ AB = 2R
+ Trường hợp 2: AB không là đường kính
Xét tam giác AOB, áp dụng bất đẳng thức tam giác ta có:
AB < AO + OB = R + R = 2R
Vậy ta luôn có AB ≤ 2R
2. Quan hệ vuông góc giữa đường kính và dây.
+ Trong một đường tròn, đường kính vuông góc với dây thì đi qua trung điểm của dây đó.
+ Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy.
Ví dụ: Cho hình vẽ sau, tính độ dài dây AB khi biết OA = 13cm; AM = MB; OM = 5cm.
Hướng dẫn:
Áp dụng định lý: “ Trong một đường tròn, đường kính đi qua trung điểm của một dây không đi qua tâm thì vuông góc với dây ấy “
Khi đó ta có: OM ⊥ AB.
Áp dụng định lý Py – ta – go ta có:
⇒ AB = 2.AM = 2.12 = 24 (cm)
B. Bài tập tự luận
Câu 1: Cho tam giác ABC có đường cao là BD, CE. Chứng minh rằng B, D, C, E cùng một đường tròn và ED < BC .
Ta có: tam giác EBC và DBC là các tam giác vuông có chung cạnh huyền BC
⇒ Đường tròn ngoại tiếp hai tam giác này có tâm tại F (F là trung điểm của BC) với bán kính FB
⇒ Các điểm B, E, D, C cùng thuộc một đường tròn
Trong đường tròn đường kính BC có ED là dây cung nên ED < BC.
Câu 2: Cho đường tròn tâm O đường kính AB, dây CD không cắt AB. Gọi H, K lần lượt là hình chiếu vuông góc của A, B lên CD. Chứng minh: CH = DK
Dựng OE vuông góc với CD (E thuộc CD)
Khi đó ta có: E là trung điểm của CD (theo định lí 2): EC = ED (1)
Xét tứ giác ABKH có
Do đó tứ giác ABKH là hình thang.
Xét hình thang ABKH có O là trung điểm của AB và OE // AH // BK
⇒ E là trung điểm của HK : EH = EK
Từ (1) và (2) thì ta có: EH – EC = EK – ED hay CH = DK