Đại số – Chương 4: Hàm Số y = ax (a ≠ 0) – Phương Trình Bậc Hai Một Ẩn

Xem toàn bộ tài liệu Lớp 9: tại đây

Câu 1: Nghiệm của phương trình x2 + 100x + 2500 = 0 là?

A. 50

B. -50

C. ± 50

D. ± 100

Ta có:

Chọn đáp án B.

Câu 2: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac. Phương trình đã cho vô nghiệm khi:

A. Δ < 0

B. Δ = 0

C. Δ ≥ 0

D. Δ ≤ 0

Xét phương trình bậc hai một ẩn ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 – 4ac

• TH1: Nếu thì phương trình vô nghiệm

• TH2: Nếu thì phương trình có nghiệm kép x1 = x2 =

• TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 =

Chọn đáp án A.

Câu 3: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac. Khi đó phương trình có hai nghiệm là:

Xét phương trình bậc hai một ẩn và biệt thức

• TH1: Nếu thì phương trình vô nghiệm

• TH2: Nếu thì phương trình có nghiệm kép x1 = x2 =

• TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 =

Chọn đáp án C.

Câu 4: Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình 6x2 – 7x = 0

Ta có:

Chọn đáp án B.

Câu 5: Không dùng công thức nghiệm, tìm số nghiệm của phương trình -4x2 + 9 = 0

A. 0

B. 1

C. 3

D. 2

Ta có:

Nên số nghiệm của phương trình là 2.

Chọn đáp án D.

Câu 6: Cho phương trình x2 – 6x + m = 0. Tìm m để phương trình đã cho vô nghiệm?

A. m > 9

B. m < 9

C.m < 4

D. m > 4

Ta có:

Chọn đáp án A.

Câu 7: Cho phương trình (m + 1)x2 + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm

A. m = -1

B. m = 0

C. m < 1

D. m ≤ 3

* Với m = -1 thì phương trình đã cho trở thành: 4x + 1 = 0 ⇔ x = -1/4

Do đó, m = -1 thỏa mãn điều kiện.

* Nếu m ≠ -1 , khi đó phương trình đã cho là phương trình bậc hai một ẩn.

Ta có: Δ = 42 – 4.(m + 1).1 = 16 – 4m – 4 = 12 – 4m

Để phương trình đã cho có nghiệm khi: Δ = 12 – 4m ≥ 0

-4m ≥ – 12 ⇔ m ≤ 3

Kết hợp 2 trường hợp, để phương trình đã cho có nghiệm thì m ≤ 3 .

Chọn đáp án D.

Câu 8: Cho phương trình 2x2 + 3x – 4 = 0 . Tìm mệnh đề sai trong các mệnh đề sau?

A. Phương trình đã cho có 2 nghiệm

B. Biệt thức ∆ = 41

C. Phương trình đã cho có nghiệm duy nhất

D. Phương trình đã cho có 2 nghiệm âm.

Ta có: Δ = 32 – 4.2.(-4) = 9 + 32 = 41 > 0

Do đó, phương trình đã cho có 2 nghiệm phân biệt là:

Vậy C sai.

Chọn đáp án C.

Câu 9: Trong các phương trình sau, phương trình nào có nghiệm duy nhất.

A. x2 – 4x+ 10 = 0

B. –2x2 + 4x + 4 = 0

C. -3x2 + 9 = 0

D. 4x2 – 4x + 1 =0

Ta tính ∆ của các phương trình đã cho:

A. ∆ = (-4)2 – 4.1.10 = 16 – 40 = 24 > 0 nên phương trình này có hai nghiệm phân biệt

B. ∆ = 42 -4.(-2).4 = 16 + 32 = 48 > 0 nên phương trình này có hai nghiệm phân biệt.

C. ∆ = 02 – 4. (-2). 4 = 0 + 32 = 32 > 0 nên phương trình này có hai nghiệm phân biệt.

D. ∆ = (-4)2 – 4.4.1 = 0 nên phương trình này có nghiệm duy nhất.

Chọn đáp án D.

Câu 10: Tìm giao điểm của đồ thị hàm số y = 2x2 và đường thẳng y = – 4x + 6

A. A(1; 2) và B(- 3; 18)

B. A(1; 2) và B(3; -6)

C. A( 3; -6) và B( -1; 10)

D. Đáp án khác

Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm phương trình:

2x2 = -4x + 6 2x2 + 4x – 6 = 0 (*)

Phương trình này có Δ = 42 – 4.2.(-6) = 16 + 48 = 64

Do đó, phương trình (*) có hai nghiệm phân biệt:

Với x = 1 thì y = -4. 1 + 6 = 2 ta được điểm A(1; 2).

Với x = -3 thì y = -4.(-3) = 18 ta được điểm B( -3; 18)

Vậy parabol cắt đường thẳng tại hai điểm là A( 1;2) và B(- 3 ; 18)

Chọn đáp án A.

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 998

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống