Xem toàn bộ tài liệu Lớp 9: tại đây
Câu 1: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b’; Δ’ = b’2 – ac. Phương trình đã cho có hai nghiệm phân biệt khi:
A. Δ’ > 0
B. Δ’ = 0
C. Δ’ ≥ 0
D. Δ’ ≤ 0
Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b’; Δ’ = b’2 – ac:
• TH1: Nếu Δ’ < 0 thì phương trình vô nghiệm
• TH2: Nếu Δ’ = 0 thì phương trình có nghiệm kép x1 = x2 =
• TH3: Nếu Δ’ > 0 thì phương trình có hai nghiệm phân biệt x1,2 =
Chọn đáp án A.
Câu 2: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b’; Δ’ = b’2 – ac. Nếu Δ’ = 0 thì:
A. Phương trình có hai nghiệm phân biệt
B. Phương trình có nghiệm kép x1 = x2 =
C. Phương trình có nghiệm kép x1 = x2 =
D. Phương trình có nghiệm kép x1 = x2 =
Xét phương trình bậc hai ax2 + bx + c = 0 (a ≠ 0) có biệt thức b = 2b’; Δ’ = b’2 – ac:
Nếu Δ’ = 0 thì phương trình có nghiệm kép x1 = x2 =
Chọn đáp án C.
Câu 3: Tính Δ’ và tìm số nghiệm của phương trình 7x2 – 12x + 4 = 0
A. Δ’ = 6 và phương trình có hai nghiệm phân biệt
B. Δ’ = 8 và phương trình có hai nghiệm phân biệt
C. Δ’ = 8 và phương trình có nghiệm kép
D. Δ’ = 0 và phương trình có hai nghiệm phân biệt
Phương trình 7x2 – 12x + 4 = 0 có a = 7; b’ = -6; c = 4 suy ra:
Δ’ = (b’)2 – ac = (-6)2 – 4.7 = 8 > 0
Nên phương trình có hai nghiệm phân biệt.
Chọn đáp án B.
Câu 4: Tìm m để phương trình 2mx2 – (2m + 1)x – 3 = 0 có nghiệm là x = 2
Chọn đáp án C.
Câu 5: Tính Δ’ và tìm nghiệm của phương trình
Chọn đáp án D.
Câu 6: Tìm nghiệm dương của phương trình: x2 – 8x + 10 = 0
Ta có: a = 1; b = – 8 nên b’ = -4; c = 10.
Δ’ = (-4)2 – 1.10 = 16 – 10 = 6
Do đó, phương trình đã cho có hai nghiệm phân biệt là;
Vậy cả hai nghiệm trên đều là nghiệm dương của phương trình đã cho.
Chọn đáp án D.
Câu 7: Cho phương trình 2x2 – 10x + m + 1 = 0; ( m là tham số). Tìm m để biệt thức Δ’ = 11
A. m = 3
B. m = 6
C. m = 9
D. m = -2
Ta có: a = 2 ; b = -10 nên b’ = -5; c = m + 1
Δ’ = (-5)2 – 2.(m + 1) = 25 – 2m – 2 = 23 – 2m
Để Δ’ = 11 thì 23 – 2m = 11
⇔ -2m = -12 ⇔ m = 6
Chọn đáp án B.
Câu 8: Cho phương trình 2x2 – 4x + m = 0. Tìm m để phương trình trên vô nghiệm?
A. m < 3
B. m > – 3
C. m > 2
D. m < -2
Ta có: a = 2; b = – 4 nên b’ = -2 và c = m
Δ’ = (-2)2 – 2m = 4 – 2m
Để phương trình đã cho vô nghiệm thì:4 – 2m < 0 hay m > 2 .
Chọn đáp án C.
Câu 9: Cho hai phương trình x2 – 4x + 4= 0 và x2 + (m + 1)x + m = 0 . Tìm m để hai phương trình trên có nghiệm chung?
A. m = 2 hoặc m = -1
B. m = 1 hoặc m = 2
C. m = -1
D. m = -2
* Xét phương trình : x2 – 4x + 4= 0
⇔ (x-2)2 = 0 ⇔ x – 2 = 0 ⇔ x = 2
Vậy phương trình này có nghiệm duy nhất.
Để hai phương trình đã cho có nghiệm chung khi và chỉ khi x = 2 là nghiệm phương trình
x2 + (m + 1)x + m = 0.Suy ra:
22 + (m + 1).2 + m = 0
⇔ 4 + 2m + 2 + m = 0 ⇔ 6 + 3m = 0
⇔ 3m = +6 ⇔ m = -2
Chọn đáp án D.
Câu 10: Cho phương trình: -8x2 + 100x + 40m = 0. Tìm m để phương trình trên có nghiệm duy nhất?
Chọn đáp án B.