Xem toàn bộ tài liệu Lớp 9: tại đây
Câu 1: Quỹ tích các điểm M nhìn đoạn thẳng AB cho trước dưới một góc vuông là
A. Đường tròn đường kính AB
B. Nửa đường tròn đường kính AB
C. Đường tròn đường kính AB/2
D. Đường tròn bán kính AB
Quỹ tích các điểm M nhìn đoạn thẳng AB cho trước dưới một góc vuông là đường tròn đường kính AB
Chọn đáp án A
Câu 2: Với đoạn thẳng AB và góc α(0° < α < 180°) cho trước thì quỹ tích các điểm M thỏa mãn
A. Hai cung chứa góc α dựng trên đoạn AB . Hai cung này không đối xứng nhau qua
B. Hai cung chứa góc α dựng trên đoạn AB và không lấy đoạn AB
C. Hai cung chứa góc α dựng trên đoạn AB . Hai cung này đối xứng nhau qua
D. Một cung chứa góc α dựng trên đoạn AB
Với đoạn thẳng AB và góc α(0° < α < 180°) cho trước thì quỹ tích các điểm thỏa mãn
Hai cung chứa góc α nói trên là hai cung tròn đối xứng nhau qua AB . Hai điểm A, B được coi là thuộc quỹ tích
Chọn đáp án C
Câu 3: Cho tam giác ABC có BC cố định và góc A bằng 50° . Gọi D là giao điểm của ba đường phân giác trong tam giác. Tìm quỹ tích điểm D
A. Một cung chứa góc 115° dựng trên đoạn BC
B. Một cung chứa góc 115° dựng trên đoạn AC
C. Hai cung chứa góc 115° dựng trên đoạn AB
D. Hai cung chứa góc 115° dựng trên đoạn BC
Quỹ tích của điểm D là hai cung chứa góc 115° dựng trên đoạn BC
Chọn đáp án D
Câu 4: Cho các hình thoi ABCD có cạnh AB cố định . Tìm quỹ tích giao điểm của hai đường chéo của hình thoi đó .
A. Quỹ tích điểm O là 2 cung chứa góc 120° dựng trên AB
B. Quỹ tích điểm O là nửa đường tròn đường kính AB, trừ hai điểm A và B
C. Quỹ tích điểm O là 2 cung chứa góc 60° dựng trên AB
D. Quỹ tích điểm O là 2 cung chứa góc 30° dựng trên AB
Xét hình thoi ABCD có hai đường chéo AC và BD vuông góc với nhau tại trung điểm của mỗi đường
Suy ra AO ⊥ BO ⇒
Ta có
⇒ Quỹ tích điểm O là nửa đường tròn đường kính AB trừ hai điểm A và B
Chọn đáp án B
Câu 5: Cho tứ giác ABCD có 2 đường chéo vuông góc với nhau tại O.Biết 2 điểm A và B cố định, 2 điểm C và D di chuyển. Tìm quỹ tích điểm O
A. Đường tròn đường kính AB.
B. Đường tròn bán kính AB.
C. Đường tròn bán kính AB/2
D. Đường tròn đường kính 2AB
Ta có: AC vuông góc BD tại O nên:
Suy ra: quỹ tích điểm O là đường tròn đường kính A
B.
Chọn đáp án A.
Câu 6: Cho đoạn thẳng BC cố định. Lấy điểm A bất kì sao cho tam giác ABC cân tại
A. Tìm quỹ tích điểm A?
A. Đường tròn tâm B bán kính BC.
B. Đường tròn tâm C bán kính BC.
C. Đường trung trực của đoạn thẳng BC.
D. Đường tròn đường kính BC.
Do tam giác ABC cân tại A nên AB = AC
Suy ra, A thuộc đường trung trực của đoạn thẳng B
C.
Chọn đáp án C.
Câu 7: Cho hai điểm B và C cố định, lấy điểm A bất kì sao cho tam giác ABC vuông tại
A.
Gọi M và N lần lượt là trung điểm BC và A
C. Tìm quỹ tích điểm N .
A. Đường tròn đường kính MC
B. Đường tròn đường kính BC
C. Đường tròn đường kính BM.
D. Đáp án khác
Xét tam giác ABC có M và N lần lượt là trung điểm của BC và AC nên MN là đường trung bình của tam giác AB
C.
Suy ra: MN// AB
Lại có: AB ⊥ AC ⇒ MN ⊥ AC
Suy ra:
Vì B và C cố định nên trung điểm M của BC cũng cố định
Do đó, quỹ tích các điểm N là đường tròn đường kính MC.
Chọn đáp án A.
Câu 8: Cho hai điểm B và C cố định. Lấy A là điểm bất kì sao cho tam giác ABC cân tại
A. Gọi H là trực tâm của tam giác AB
C. Tìm quỹ tích điểm H
A. Đường tròn đường kính BC
B. Đường trung trực của đoạn thẳng BC
C. Đường tròn tâm B, bán kính BC
D. Đường tròn tâm C, bán kính BC
Vì H là trực tâm của tam giác ABC nên AH ⊥ BC
Lại có tam giác ABC là tam giác cân tại A nên đường cao AH đồng thời là đường trung trực.
Suy ra: H nằm trên đường trung trực của đoạn thẳng BC.
Chọn đáp án B.