Xem toàn bộ tài liệu Lớp 7: tại đây
A. Phương pháp giải
+) Đưa về các số hữu tỉ có cùng tử số hoặc mẫu số.
+) Áp dụng: nếu
B. Ví dụ minh họa
Ví dụ 1: Tìm số nguyên a sao cho
Lời giải:
Nhận xét: Ở bài này số cần tìm a thuộc tử số, nên ta đưa các số hữu tỉ về cùng mẫu chung.
Vậy a = 3 và a = 4 thì thỏa mãn yêu cầu bài toán.
Ví dụ 2: Tìm số nguyên a sao cho
Lời giải:
Nhận xét: Ở bài này a thuộc mẫu số, nên ta đưa các số hữu tỉ về cùng tử chung.
Vì a ∈ Z nên a ∈ {10; 11; 12; 13; 14; 15; …; 23}
Vậy a ∈ {10; 11; 12; 13; 14; 15; …; 23}
Ví dụ 3: Tìm phân số có mẫu số là 5, lớn hơn
Lời giải:
C. Bài tập vận dụng
Câu 1. Tìm số nguyên a sao cho
Hướng dẫn
Ta có:
⇒ -30 < 8a < 30 ⇒ -30 : 8 < a < 30 : 8 ⇒ -3,75 < a < 3,75
Vì a ∈ Z
Vậy a ∈ {-3; -2; -1; 0; 1; 2; 3}.
Câu 2. Tìm 6 phân số lớn hơn
Hướng dẫn
Gọi x là phân số thỏa mãn yêu cầu bài toán
Câu 3. Viết ba số hữu tỉ xen giữa hai số hữu tỉ
Hướng dẫn
Câu 4. Tìm phân số có tử số bằng 7, lớn hơn
Hướng dẫn
Gọi phân số cần tìm là
Theo bài ra ta có:
⇒
⇒ 91 > 10a > 77 ⇒ 91 : 10 > a > 77 : 10 ⇒ 9,1 > a > 7,7
Vì a ∈ Z nên a = 8; a = 9
Vậy phân số cần tìm là
Câu 5. Tìm số nguyên a sao cho
Hướng dẫn
D. HERE