Chủ đề 3: Giá trị tuyệt đối của một số hữu tỉ

Xem toàn bộ tài liệu Lớp 7: tại đây

A. Phương pháp giải

Dạng 1: Dựa vào tính chất |x| ≥ 0. Ta biến đổi biểu thức A đã cho về dạng A ≥ a (với a là số đã biết) để suy ra giá trị nhỏ nhất của A là a hoặc biến đổi về dạng A ≤ b (với b là số đã biết) từ đó suy ra giá trị lớn nhất của A là b.

Dạng 2: Các biểu thức chứa hai hạng tử là hai biểu thức trong dấu giá trị tuyệt đối.

Phương pháp: Sử dụng tính chất

Với mọi x, y ∈ Q, ta có

  |x + y| ≤ |x| + |y|

  |x – y| ≥ |x| – |y|

B. Ví dụ minh họa

Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức A = |x + 1001| + 1

Lời giải:

A = |x + 1001| + 1

Vì |x + 1001| ≥ 0 ∀ x

Suy ra |x + 1001| + 1 ≥ 0 + 1 ∀ x

Do đó A ≥ 1 ∀ x

Vậy GTNN của A là , khi |x + 1001| = 0, nghĩa là x = -1001.

Ví dụ 2: Tìm giá trị lớn nhất B = 5 – |5x + 3|

Lời giải:

B = 5 – |5x + 3|

Vì |5x + 3| ≥ 0 ∀ x

⇒ -|5x + 3| ≤ 0 ∀ x

⇒ -|5x + 3| + 5 ≤ 5 ∀ x

⇒ 5 – |5x + 3| ≤ 5 ∀ x

Suy ra B ≤ 5 ∀ x

Vậy GTLN của B là 5, khi |5x + 3| = 0, nghĩa là 5x + 3 = 0 ⇒ x =

Ví dụ 3: Tìm GTNN của biểu thức C = |x – 1| + |x – 2019|

Lời giải:

C = |x – 1| + |x – 2019|

 = |x – 1| + |-(x – 2019)| (vì |a| = |-a|)

 = |x – 1| + |2019 – x|

Vì |x – 1| + |2019 – x| ≥ |x – 1 + 2019 – x| (theo tính chất ở phần lý thuyết)

Mà |x – 1 + 2019 – x| = |2019 – 1| = |2018| = 2018

Suy ra C ≥ 2018

Vậy GTNN của C là 2018

Ví dụ 4: Tìm GTLN của biểu thức D = |x + 5000| – |x – 3000|

Lời giải:

D = |x + 5000| – |x – 3000| ≤ |x + 5000 – (x – 3000)| (áp dụng tính chất ở phần lý thuyết)

Vì | x + 5000 – (x – 3000)| = | x + 5000 – x + 3000| = |8000| = 8000

Suy ra D ≤ 8000

Vậy GTLN của D là 8000.

C. Bài tập vận dụng

Câu 1. Giá trị lớn nhất của biểu thức A = -2 – |1,4 – x|

A. – 2

B. -3,4

C. 2

D. -1

Hướng dẫn

A = -2 – |1,4 – x|

Vì |1,4 – x| ≥ 0 ∀ x ⇒ -|1,4 – x| ≤ 0 ∀ x

⇒ – 2 -|1,4 – x| ≤ – 2 – 0 = -2 ∀ x

Do đó A ≤ – 2 ∀ x

Dấu “=” xảy ra khi 1,4 – x = 0 ⇒ x = 1,4

Vậy giá trị lớn nhất của A là -2, khi x = 1,4.

Đáp án A

Câu 2. Giá trị nhỏ nhất của biểu thức H = |x – 5| + 10 là

A. 5

B. 0

C. 10

D. 15

Hướng dẫn

Vì |x – 5| ≥ 0 ∀ x ⇒ |x – 5| + 10 ≥ 0 + 10 = 10 ∀ x

Suy ra H ≥ 10 ∀ x

Dấu “=” xảy ra khi x – 5 = 0 hay x = 5

Vậy giá trị nhỏ nhất của H là 10 khi x = 5.

Đáp án C

Câu 3. Giá trị lớn nhất của biểu thức

Hướng dẫn

Vì |x – 2| ≥ 0 ∀ x ⇒ |x – 2| + 3 ≥ 0 + 3 = 3 ∀ x

(lấy 1 chia cả hai vế, bất đẳng thức đổi dấu)

Suy ra

Dấu “=” xảy ra khi x – 2 = 0, hay x = 2

Vậy giá trị lớn nhất của N là khi x = 2.

Đáp án B

Câu 4. Biểu thức K = 2|3x – 1| – 4 đạt giá trị nhỏ nhất khi

Hướng dẫn

Vì |3x – 1| ≥ 0 ∀ x

⇒ 2|3x – 1| ≥ 2.0 = 0 ∀ x

⇒ 2|3x – 1| – 4 ≥ 0 – 4 = -4 ∀ x

Do đó K ≥ – 4 ∀ x

Dấu “=” xảy ra khi 3x – 1 = 0 ⇒ 3x = 1 ⇒ x = .

Vậy K đạt giá trị nhỏ nhất khi x = .

Đáp án C

Câu 5. Tìm giá trị của x và y để biểu thức

có giá trị lớn nhất.

Hướng dẫn

Đáp án B

Câu 6. Tìm giá trị nhỏ nhất của biểu thức N = |x + 5| + |x – 1| + 4

A. 0

B. 4

C. 5

D. 10

Hướng dẫn

Ta có: |x – 1| = |-(x – 1)| = | 1 – x| (vì |a| = |-a|)

Khi đó N = |x + 5| + |1 – x| + 4

Vì |x + 5| + |1 – x| ≥ |x + 5 + 1 – x| = |6| = 6

Do đó N = |x + 5| + |x – 1| + 4 ≥ 6 + 4 = 10

Vậy giá trị nhỏ nhất của N là 10

Đáp án D

D. HERE

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1140

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống