Bài 5: Lũy thừa của một số hữu tỉ

Xem toàn bộ tài liệu Lớp 7: tại đây

A. Lý thuyết

1. Lũy thừa với số mũ tự nhiên

Lũy thừa bậc n của một số hữu tỷ x, kí hiệu là xn, là tích của n thừa số x (n là số tự nhiên lớn hơn 1).

Với x ∈ Q, n ∈ N, n > 1 ta có:

xn đọc là x mũ n hoặc x lũy thừa n hoặc lũy thừa bậc n của x; x gọi là cơ số, n gọi là số mũ.

   + Nếu thì

   + x0 = 1 (với x ≠ 0)

   + x1 = (với x ≠ 0)

Chú ý:

   + 1n = 1,0n = 0 (n ≠ 0)

   + Lũy thừa bậc chẵn của một số âm là một số dương.

   + Lũy thừa bậc lẻ của một số âm là một số âm.

   + Nếu

thì

Ví dụ:

   + Tính:

   + Tính: (-3,5)2 = (-3,5). (-3,5) = 12,25

2. Tích và thương của hai lũy thừa cùng cơ số

Với số tự nhiên a, ta đã biết:

am. an = am+n

am:an = am-n (a ≠ 0, m ≥ n)

Cũng như vậy, đối với số hữu tỉ x, ta có các công thức:

xm. xn = xm+n

(Khi nhân hai lũy thừa cùng cơ số, ta giữ nguyên cơ số và cộng hai số mũ)

xm😡n = xm-n (x ≠ 0, m ≥ n)

(Khi chia hai lũy thừa cùng cơ số khác 0, ta giữ nguyên cơ số và lấy số mũ của lũy thừa bị chia trừ đi mũ của lũy thừa chia)

Ví dụ:

   + Tính

   + Tính: (3,2)2. (3,2)2 = (3,2)(2+2) = (3,2)4

3. Lũy thừa của lũy thừa

Khi tính lũy thừa của một lũy thừa, ta giữ nguyên cơ số và nhân hai số mũ

Ta có công thức: (xm)n = x(m.n)

Ví dụ:

   + Tính: (42)3 = 42.3 = 46 = 4096.

   + Tính: (24)4 = 24.4 = 216.

B. Bài tập

Bài 1: Tính giá trị của biểu thức

Hướng dẫn giải:

Bài 2: Tìm tất cả các số tự nhiên n sao cho: 2.32 ≥ 2n > 8

Hướng dẫn giải:

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 913

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống