Xem toàn bộ tài liệu Lớp 7: tại đây
A. Lý thuyết
1. Đường cao của tam giác
• Trong một tam giác, đoạn vuông góc kẻ từ một đỉnh đến đường thẳng chứa cạnh đối diện gọi là đường cao của tam giác đó.
Ví dụ: Đoạn thẳng AI là một đường cao của tam giác ABC, còn nói AI là đường cao xuất phát từ đỉnh A (của tam giác ABC).
• Mỗi tam giác có ba đường cao.
2. Tính chất ba đường cao của một tam giác
Ba đường cao của tam giác cùng đi qua một điểm. Điểm đó gọi là trực tâm của tam giác.
Ví dụ: H là giao điểm ba đường cao của tam giác ABC. H là trực tâm của tam giác ABC
3. Về các đường cao, trung tuyến, trung trực, phân giác của tam giác cân
Tính chất của tam giác cân: Trong một tam giác cân, đường trung trực ứng với cạnh đáy đồng thời là đường phân giác, đường trung tuyến và đường cao cùng xuất phát từ đỉnh đối diện với cạnh đó.
Nhận xét:
Trong một tam giác, nếu hai trong bốn loại đường (đường trung tuyến, đường phân giác, đường cao cùng xuất phát từ một đỉnh và đường trung trực ứng với cạnh đối diện của đỉnh này) trùng nhau thì tam giác đó là một tam giác cân
Đặc biệt đối với tam giác đều, từ tính chất trên suy ra: Trong tam giác đều, trọng tâm, trực tâm, điểm cách đều ba đỉnh, điểm nằm trong tam giác và cách đều ba cạnh là bốn điểm trùng nhau.
4. Ví dụ
Ví dụ :Cho tam giác nhọn ABC có hai đường cao AH và BK cắt nhau tại D. Biết
Hướng dẫn giải:
B. Bài tập
Bài 1: Cho hai đường thẳng xx’ và yy’ cắt nhau tại O. Trên Ox và Ox’ lần lượt lấy các điểm A và C; trên Oy và Oy’ lần lượt lấy các điểm B, D sao cho OA = OA, OC = OD. Gọi M, N lần lượt là trung điểm của AB, CD
Chứng minh M, O, N thẳng hàng.
Hướng dẫn giải:
Bài 2:Cho tam giác ABC cân tại A. Qua A kẻ đường thẳng d song song với đáy BC. Các đường phân giác của góc B và góc C lần lượt cắt d tại E và F. Chứng minh rằng:
a) d là phân giác ngoài của góc A
b) AE = AF
Hướng dẫn giải:
b) Gọi I là giao điểm của hai tia phân giác CF và BE trong tam giác ABC
Nên I là giao điểm của ba đường phân giác trong tam giác ABC
Suy ra AI là tai phân giác của góc
Mà tam giác ABC cân tại A
Nên AI là đường trung trực ứng với cạnh BC của tam giác ABC