I/ Lý thuyết & Bài tập theo bài học

Xem toàn bộ tài liệu Lớp 8: tại đây

I. Bài tập trắc nghiệm

Bài 1: Cho Δ ABC, có đường cao AH = 2/3BC thì diện tích tam giác là ?

   A. 2/5BC2.   B. 2/3BC2.

   C. 1/3BC2.   D. 1/3BC.

Ta có diện tích của tam giác: S = 1/2b.h.

Trong đó: b là độ dài cạnh đáy, h là độ dài đường cao

Khi đó ta có : S = 1/2AH.BC = 1/2.2/3BC.BC = 1/3BC2.

Chọn đáp án C.

Bài 2: Δ ABC có đáy BC = 6cm, đường cao AH = 4cm. Diện tích Δ ABC là ?

   A. 24cm2   B. 12cm2

   C. 24cm.   D. 14cm2

Ta có diện tích Δ ABC là S = 1/2AH.BC = 1/2.6.4 = 12( cm2 ).

Chọn đáp án B.

Bài 3: Cho Δ ABC vuông tại A, có đáy BC = 5cm và AB = 4cm. Diện tích Δ ABC là ?

   A. 12cm2   B. 10cm

   C. 6cm2   D. 3cm2

Áp dụng định lý Py – to – go ta có: AB2 + AC2 = BC2 ⇒ AC = √ (BC2 – AB2)

⇒ AC = √ (52 – 42) = 3cm.

Khi đó SABC = 1/2AB.AC = 1/2.4.3 = 6( cm2 )

Chọn đáp án C.

Bài 4: Cho Δ ABC, đường cao AH. Biết AB = 15cm, AC = 41cm, HB = 12cm. Diện tích của Δ ABC là ?

   A. 234( cm2 )   B. 214( cm2 )

   C. 200( cm2 )   D. 154( cm2 )

Áp dụng định lý Py – to – go ta có:

+ Xét Δ ABH có AH2 + BH2 = AB2 ⇒ AH = √ (AB2 – BH2)

⇒ AH = √ (152 – 122) = 9 ( cm ).

+ Xét Δ ACH có AC2 = AH2 + HC2 ⇒ HC = √ (AC2 – AH2)

⇒ HC = √ (412 – 92) = 40 ( cm ).

Khi đó SABC = 1/2AH.BC = 1/2AH( HB + HC ) = 1/2.9.( 12 + 40 ) = 234 ( cm2 ).

Chọn đáp án A.

Bài 5: Cho tam giác ABC có AB = 6cm, AC = 8cm. Hai đường cao xuất phát từ đỉnh B và C là BH và CK. Biết BH = 9cm. Tính CK

   A. 12cm     B. 15cm

   C. 9cm     D. 8cm

Diện tích tam giác ABC là:

Suy ra: 3CK = 36 nên CK = 12cm

Chọn đáp án A

Bài 6: Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8 cm. Tính độ dài đường cao xuất phát từ A?

   A. 4cm     B. 4,5cm

   C. 4,8cm     D. 5cm

Áp dụng định lí Pytago vào tam giác ABC ta có:

BC2 = AB2 + AC2 = 62 + 82 = 100

Suy ra: BC = 10cm

Diện tích tam giác ABC là:

Gọi AH là đường cao xuất phát từ đỉnh A của tam giác ABC ,

Khi đó:

Suy ra: 5AH = 24 ⇔ AH = 4,8cm

Chọn đáp án C

Bài 7: Cho tam giác ABC có đường cao AH = 6cm, diện tích tam giác ABC là 30 cm2. Gọi M là trung điểm của BC. Tính diện tích tam giác ABM

   A. 10cm2     B. 12cm2

   C. 20cm2     D. 15cm2

Chọn đáp án D

Bài 8: Cho tam giác ABC có diện tích bằng 40cm2. Gọi M là trung điểm của AC . Tính diện tích tam giác ABM?

   A. 10cm2     B. 20cm2

   C. 25cm2     D. Chưa thể kết luận

Chọn đáp án B

Bài 9: Cho tam giác ABC có AB = 4cm và AC = 7cm. Gọi BH và CK theo thứ tự là đường vuông góc từ đỉnh B và C của tam giác. Tính BH/CK ?

   A. 4/7     B. 7/4

   C. 4/3     D. Đáp án khác

Chọn đáp án A

Bài 10: Cho tam giác ABC có AB = 6cm và AC = 8cm . Gọi M và N theo thứ tự là trung điểm của AC và AB. Tính tỉ số

   A. 1/2     B. 2

   C. 1     D. Chưa thể kết luận

Chọn đáp án C

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1106

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống