II/ Các dạng bài tập

Xem toàn bộ tài liệu Lớp 8: tại đây

Với Cách chứng minh bất đẳng thức bằng phương pháp biến đổi tương đương môn Toán lớp 8 phần Đại số sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 4: Bất phương trình bậc nhất một ẩn để đạt điểm cao trong các bài thi môn Toán 8.

Dạng bài: Sử dụng biến đổi tương đương

A. Phương pháp giải

Một số kĩ thuật cơ bản:

+ Kỹ thuật xét hiệu hai biểu thức

+ Kỹ thuật sử dụng các hằng đẳng thức

+ Kỹ thuật thêm bớt một hằng số, một biểu thức

+ Kỹ thuật đặt biến phụ

+ Kỹ thuật sắp thứ tự các biến.

+ Kỹ thuật khai thác tính bị chặn của các biến

B. Ví dụ minh họa

Câu 1: Cho ab là hai số bất kỳ chứng minh rằng

         

Lời giải:

Câu 2:

Lời giải:

Áp dụng: 

Ta viết bất đẳng thức

 

đúng theo bất đẳng thức vừa chứng minh ở trên.

Câu 3:  Chứng minh rằng với ba số a,b,c tùy ý ta luôn có:

Lời giải:

Xét hiệu:

C. Bài tập tự luyện

Câu 1: Cho a, b, c là các số thực bất kì. Chứng minh rằng:

Câu 2: Cho a, b, c là các số thực bất kì. Chứng minh rằng:

Câu 3: Cho a, b, c, d, e là các số thực bất kì. Chứng minh rằng:

Câu 4: Cho a, b, c là các số thực thỏa mãn điều kiện a, b, c ≥1. Chứng minh rằng:

Câu 5: Cho a, b, c là các số thực dương thỏa mãn .

Chứng minh rằng:

Câu 6: Cho các số thực a, b, c thỏa mãn điều kiện a+b+c=0 . 

Chứng minh rằng

.

Câu 7: Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

Câu 8: Chứng minh rằng với mọi số thực khác không a, b ta có:

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 4 / 5. Số lượt đánh giá: 1054

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống