Xem toàn bộ tài liệu Lớp 8: tại đây
A. Lý thuyết
1. Định nghĩa
Hình thang cân là hình thang có hai góc kề một đáy bằng nhau.
Tứ giác ABCD là hình thang cân (đáy AB, CD)
Chú ý: Nếu ABCD là hình thang cân (đáy AB, CD) thì Cˆ = Dˆ và Aˆ = Bˆ.
2. Tính chất
Định lí 1: Trong một hình thang cân, hai cạnh bên bằng nhau, ABCD là hình thang cân (đáy AB, CD) ⇒ AD = BC
Định lí 2: Trong một hình thang cân, hai đường chéo bằng nhau, ABCD là hình thang cân (đáy AB, CD) ⇒ AC = BD
Định lí 3: Hình thang có hai đường chéo bằng nhau là hình thang cân. Hình thang ABCD (đáy AB, CD) có AC = BD ⇒ ABCD là hình thang cân.
3. Dấu hiệu nhận biết
Hình thang có hai góc kề một đáy bằng nhau là hình thang cân.
Hình thang có hai đường chéo bằng nhau là hình thang cân.
B. Ví dụ minh họa
Ví dụ : Cho hình thang cân ABCD (AB // CD, AB < CD ). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.
Hướng dẫn:
Ta có ABCD là hình thang cân nên AD = BC
+ Xét tam giác vuông ADE có
AD2 = AE2 + DE2 ⇒ DE2 = AD2 – AE2 ⇔ DE = √( AD2 – AE2 ) ( 1 )
+ Xét tam giác vuông BCF có:
BC2 = BF2 + CF2 ⇒ CF2 = BC2 – BF2 ⇔ CF = √( BC2 – BF2 ) ( 2 )
Xét tứ giác ABFE có AB// EF nên là hình thang. Lại có hai cạnh bên AE// BF (cùng vuông góc CD ) nên AE = BF (3)
Từ ( 1 ), ( 2 ) và ( 3 ) ⇒ DE = CF (do AD = BC và AE = BF )
B. Bài tập tự luyện
Bài 1: Cho hình thang cân ABCD( AB//CD,AB < CD ). Kẻ đường cao AH,BK của hình thang. Chứng minh rằng DH = CK.
Hướng dẫn:
Áp dụng định nghĩa, tính chất và giả thiết của hình thang cân ta có:
(trường hợp cạnh huyền – góc nhọn)
⇒ DH = CK (cặp cạnh tương ứng bằng nhau)
Vậy DH = CK. (đpcm)
Bài 2: Tính các góc của hình thang cân, biết có một góc bằng 600
Hướng dẫn:
Xét hình thang cân ABCD ( AB//CD ) có Dˆ = 600
Theo định nghĩa và giả thiết về hình thang cân ta có:
Do góc A và góc D là hai góc cùng nằm một phía của
AB//CD nên chúng bù nhau hay Aˆ + Dˆ = 1800.
⇒ Aˆ = 1800 – Dˆ = 1800 – 600 = 1200.
Do đó Aˆ = Bˆ = 1200.
Vậy Cˆ = Dˆ = 600 và Aˆ = Bˆ = 1200.