II/ Các dạng bài tập

Xem toàn bộ tài liệu Lớp 8: tại đây

Với Cách chứng minh bất đẳng thức hay, chi tiết môn Toán lớp 8 phần Đại số sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 4: Bất phương trình bậc nhất một ẩn để đạt điểm cao trong các bài thi môn Toán 8.

Dạng 1: Sử dụng biến đổi tương đương

A. Phương pháp giải

Một số kĩ thuật cơ bản:

+ Kỹ thuật xét hiệu hai biểu thức

+ Kỹ thuật sử dụng các hằng đẳng thức

+ Kỹ thuật thêm bớt một hằng số, một biểu thức

+ Kỹ thuật đặt biến phụ

+ Kỹ thuật sắp thứ tự các biến.

+ Kỹ thuật khai thác tính bị chặn của các biến

B. Ví dụ minh họa

Câu 1: Cho ab là hai số bất kỳ chứng minh rằng

         

Lời giải:

Câu 2:

Lời giải:

Áp dụng: 

Ta viết bất đẳng thức

 

đúng theo bất đẳng thức vừa chứng minh ở trên.

Câu 3:  Chứng minh rằng với ba số a,b,c tùy ý ta luôn có:

Lời giải:

Xét hiệu:

C. Bài tập tự luyện

Câu 1: Cho a, b, c là các số thực bất kì. Chứng minh rằng:

Câu 2: Cho a, b, c là các số thực bất kì. Chứng minh rằng:

Câu 3: Cho a, b, c, d, e là các số thực bất kì. Chứng minh rằng:

Câu 4: Cho a, b, c là các số thực thỏa mãn điều kiện a, b, c ≥1. Chứng minh rằng:

Câu 5: Cho a, b, c là các số thực dương thỏa mãn .

Chứng minh rằng:

Câu 6: Cho các số thực a, b, c thỏa mãn điều kiện a+b+c=0 . 

Chứng minh rằng

.

Câu 7: Cho a, b, c là các số thực dương tùy ý. Chứng minh rằng:

Câu 8: Chứng minh rằng với mọi số thực khác không a, b ta có:

Dạng 2: Sử dụng phương pháp phản chứng

A. Phương pháp giải

+ Dùng mệnh đề đảo

+ Phủ định rồi suy ra điều trái với giả thiết

+ Phủ định rồi suy ra trái với điều đúng

+ Phủ định rồi suy ra hai mệnh đề trái ngược nhau

+ Phủ định rồi suy ra kết luận

*Một số đẳng thức và bất đẳng thức cần nhớ:

B. Ví dụ minh họa

Câu 1: Chứng minh rằng:

Lời giải:

Điều này là vô lý với mọi a và b

Vậy điều giả sử là sai →điều phải chứng minh.

Câu 2: Cho ba số a, b, c ∈ (0;1) . Chứng minh rằng có ít nhất một trong các bất đẳng thức sau đây là sai:

Lời giải:

Giả sử cả ba bất đẳng thức trên đều đúng. Theo giả thiết a, b, c, 1-a, 1-b, 1-c đều là số dương suy ra 

Câu 3: Cho a, b, c là các số thực thỏa mãn các điều kiện sau:

Chứng minh rằng cả ba số a, b, c đều là số dương.

Lời giải:

Giả sử rằng trong ba số a, b, c có một số không dương, không mất tổng quát ta chọn số đó là a, tức là a≤0.

Vì abc>0 nên a≠0, do đó suy ra a<0.

C. Bài tập tự luyện

Câu 1: Cho a, b, c là các số thực bất kì. Chứng minh rằng có ít nhất một trong các bất đẳng thức sau đây là đúng:

Câu 2: Cho a, b, c là các số thực thỏa mãn điều kiện

.

Chứng minh rằng:

Câu 3: Cho a, b, c là các số thực thỏa mãn 

Chứng minh rằng:

Câu 4: Cho a, b là các số thực dương thỏa mãn a+b=2. Chứng minh rằng:

Câu 5: Cho các số thực a, b, c ∈ (0;2). Chứng minh rằng có ít nhất một trong ba bất đẳng thức sau đây là sai:

Câu 6: Cho ba số thực a, b, c đôi một khác nhau. Chứng minh rằng tồn tại ít nhất một trong các số 9ab, 9bc, 9ac nhỏ hơn

Câu 7: Cho 25 số tự nhiên  khác 0 thỏa mãn điều kiện:

Dạng 3: Sử dụng bất đẳng thức về giá trị tuyệt đối

A. Phương pháp giải

Ta có các tính chất sau : 

Tính chất 1: Với hai số thực a, b tùy ý:

Tính chất 2: Ta có:

Tính chất 3: Ta có:

Tính chất 4: Ta có:

*Với phương trình ta sử dụng các tính chất:

Tính chất 1: Nếu:

Tính chất 2: Nếu:

Tính chất 3: Nếu:

Tính chất 4: Nếu:

B. Ví dụ minh họa 

Câu 1: Chứng minh rằng với mọi số thực a, b ta luôn có:

Lời giải:

Ta có:

Câu 2: Giải phương trình:

Lời giải:

Ta biến đổi phương trình về dạng:

Vậy, phương trình có nghiệm là x≥1.

Câu 3: Cho số thực x thỏa mãn

Chứng minh rằng x≥2

Lời giải:

Ta có:

Câu 4: a) Tìm giá trị nhỏ nhất của biểu thức: .

b) Tìm tất cả các giá trị của x để đạt được giá trị nhỏ nhất đó.

Lời giải:

a) Áp dụng bất đẳng thức  ta có

Dễ thấy khi x = 1 thì A = 2. Vậy giá trị nhỏ nhất của biểu thức A là 2

b) Theo nhận xét trên, dấu “=” ở bất đẳng thức trên xảy ra khi và chỉ khi

Ta có bảng xét dấu:

 Dựa vào bảng ta có

C. Bài tập tự luyện

Câu 1: Chứng minh rằng  :

         

Câu 2: Tìm tất cả các số nguyên x để biểu thức sau đây đạt giá trị nhỏ nhất:

Câu 3: Chứng minh rằng với mọi số thực a, b, c ta luôn có:

Câu 4: 

a)  Chứng minh rằng với mọi số thực a, b ta có |a ± b| ≥ |a| – |b|.
b) Biết rằng | a | > 2 | b |. Chứng minh rằng |a| < 2|a – b|.

Câu 5: Chứng minh rằng:
a. Nếu x ≥ y ≥ 0 thì  

 

b. Với hai số a, b tuỳ ý, ta có 

Dạng 4: Sử dụng bất đẳng thức Cô – si, bất đẳng thức Bunhiacopxki

A. Phương pháp giải

a) Bất đẳng thức Cô – si

Cho hai số không âm a, b, ta luôn có:

, dấu đẳng thức xảy ra khi và chỉ khi a=b.

Mở rộng:

a. Với các số a, b, c không âm, ta luôn có:

Dấu đẳng thức xảy ra khi và chỉ khi a=b=c.

b. Với n số  không âm, ta luôn có:

Dấu đẳng thức xảy ra khi và chỉ khi

b) Bất đẳng thức Bunhiacopxki

Cho a1, a2, b1, b2 là những số thực, ta có:

Dấu đẳng thức xảy ra khi 

Mở rộng: Với các số thực a1, a2, b1, b2, a3, b3, ta luôn có:

Dấu đẳng thức xảy ra khi 

B. Ví dụ minh họa

Câu 1: Cho a,b>0. Chứng minh rằng:

Lời giải:

Sử dụng bất đẳng thức Cô-si:

 

     

Nhân hai vế tương ứng của (1), (2), ta được:

Dấu bằng xảy ra khi: 

Câu 2: Cho ba số dương a, b, c. Chứng minh rằng:

Giải.

Ta có:

Dấu đẳng thức xảy ra khi:

Câu 3: Chứng minh rằng với a, b, c tùy ý ta luôn có:

Lời giải:

Ta có:

Lấy căn bậc hai của hai vế, ta đi đến:

C. Bài tập tự luyện

Câu 1: Cho 3 số dương x, y, z tùy ý. Chứng minh rằng:

Câu 2: Cho 3 số dương x, y, z thỏa mãn: xyz=1. Chứng minh rằng:

Câu 3: Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng:

Câu 4: Cho . Chứng minh rằng:

Câu 5: Chứng minh rằng với mọi số thực x, y luôn có:

Câu 6: Hai số x, y thỏa mãn . Chứng minh rằng

Câu 7: Cho các số không âm a, y thỏa mãn . Chứng minh rằng:

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1149

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống