Tải ở cuối trang

Sách giáo khoa đại số 10

Phương trình và hệ phương trình bậc nhất nhiều ẩn. –

Phương trình bậc nhất hai ẩn x, y có dạng tổng quát là ax + by = c (1) trong đó a, b, c là các hệ số, với điều kiện a và b không đồng thời bằng 0. Cặp (1;-2) có phải là một nghiệm của phương trình 3x – 2y = 7 không ? Phương trình đó còn có những nghiệm khác nữa không ?*b) Khi b z 0, phương trình ax + by = C trở thành C. – – – – – – – 2*=一高*サァ (2) Cặp số (\0 ; y0) là một nghiệm của phương trình (1) khi và chỉ khi điểm M(\0 ; yo) thuộc đường thẳng (2). Tổng quát, người ta chứng minh được rằng phương trình bậc nhất hai ẩn luôn luôn có vô số nghiệm. Biểu diễn hình học tập nghiệm của phương trình (1) là một đường thẳng trong mặt phẳng toạ độ Oxy.Hãy biểu diễn hình học tập nghiệm của phương trình 3x – 2y=6,2. Hệ hai phương trình bậc nhất hai ẩn64Hệ hai phương trình bậc nhất hai ẩn có dạng tổng quát là αιχ + by = c a2x + b2,y = C2trong đó x, y là hai ẩn ; các chữ còn lại là hệ số(3)Nếu cặp số (\0 ; yo) đồng thời là nghiệm của cả hai phương trình của hệ thì (\0 ; yo) được gọi là một nghiệm của hệ phương trình (3). Giải hệ phương trình (3) là tìm tập nghiệm của nó.3. a) Có mấy cách giải hệ phương trình –3y = 9 2 x + y = 5? b) Dùng phương pháp Cộng đại số để giải hệ phương trình 3.x — 6у = 9 –2x + 4 y = -3. Có nhận xét gì về nghiệm của hệ phương trình này ?II – HÊ BA PHƯơNG TRìNH BÂC NHẤT BA ẤN Phương trình bậc nhất ba ẩn có dạng tổng quát là ax + by + c2 = d.trong đó x, y, z là ba ẩn ; a, b, c, d là các hệ số và a, b, c không đồng thờibằng 0. Hệ ba phương trình bậc nhất ba ẩn có dạng tổng quát là αιχ + by + C2 = a, a2x + by + cz = d; (4) dვx + bვy + Cვz = d3 trong đó x, y, z là ba ẩn ; các chữ còn lại là các hệ số Mỗi bộ ba số (\o : yo; 20) nghiệm đúng cả ba phương trình của hệ được gọi là một nghiệm của hệ phương trình (4). 17 3 3 – Chắng hạn, 4. :一 4. 2. là nghiệm của hệ phương trình x + 3y – 22 = -1 3. 4y + 32 = . (5) 2 22 = 3, 7 5 1 còn |-); ; ; – 2 | là nghiệm của hệ phương trình 2 2 2 x + 2y+ 22 = l y + 4 = , 2x +3y + 52 = -2 (6)-4x — 7y + z = -4. Hệ phương trình (5) có dạng đặc biệt, gọi là hệ phương trình dạng tam giác.Việc giải hệ phương trình dạng này rất đơn giản. Từ phương trình cuối tính được 2 rồi thay vào phương trình thứ hai ta tính được y và cuối cùng thay 2 và y tính được vào phương trình đầu sẽ tính được \.4 汽。 giải hệ phương trình (5).5ĐA| SỐ 10. A6566Mọi hệ ba phương trình bậc nhất ba ẩn đều biến đổi được về dạng tam giác, bằng phương pháp khử dân ẩn số”. Chẳng hạn, sau đây là cách giải hệ phương trình (6).Giải. Nhân hai vế của phương trình thứ nhất của hệ (6) với -2 rồi cộng vào phương trình thứ hai theo từng vế tương ứng, nhân hai vế của phương trình thứ nhất với 4 rồi cộng vào phương trình thứ ba theo từng vế tương ứng, ta được hệ phương trình (đã khử x ở hai phương trình cuối)1 + 2y+ 22 = – x + Zy + Zz 2 — y + z = -3 y + 92 = -2.Tiếp tục cộng các vế tương ứng của phương trình thứ hai và phương trình thứ ba của hệ mới nhận được, ta được hệ phương trình tương đương dạng tam giác1 2 y + 22 = – x + 2y + 22 2 — y + z = -3 102 =-5. Ta dễ dàng giải ra được = = — , y = °, x = – 7. ==一五y=五 2Vậy nghiệm của hệ phương trình là་ ༥་༧ ) – [7་ཀྱི་ (x, y, z) = 2. ‘(*) Phương pháp này do nhà toán học Đức Gau-xơ (Gauss, 1777 – 1855) tìm ra, nên cũng còn gọi là phương pháp Gau-xơ.5ÐA SÓ 10-8B Ả I ĐQ C TH Ê MTrong kho tàng văn hoá dân gian Việt Nam Có bài toán “Trăm trâu trăm cỏ” sau đâyTrăm trâu trăm cỏ, Trâu đứng ăn năm, Trâu nằm ăn ba, Lụ khụ trâu già, Ba Con một bỐ.Hỏi có bao nhiêu trâu đứng, bao nhiêu trâu nằm, bao nhiều trâu già ?Giải. Gọi số trâu đứng là x, số trâu nằm là y, số trâu già là 2 (x, y, z là những số nguyên dương nhỏ hơn 100). Ta có hệ phương trìnhx + y + z = 1005x + 3y + z = 100.Đây là hệ hai phương trình bậc nhất ba ẩn, nếu không tính đến điều kiện của ẩn thì hệ phương trình này có vô số nghiệm (nếu khử – ta được một phương trình bậc nhất của hai ẩn 7x + 4y=100). Tuy nhiên, vì x, y, z phải là những số nguyên dương nhỏ hơn 100, nên chỉ có một số hữu hạn nghiệm, cụ thể ở đây có ba nghiệmx = 4 ༣༣ ། 8. “A = 12 y = 18 y = 11 y = 4 z = 78: z = 81 : z = 84.Bài toán dân gian ở trên thuộc loại phương trình Đi-ô-phăng (mang tên nhà toán học cổ Hi Lạp là Diophante).67 1.2.3.4.5.6.7.68Bời tộp Cho hệ phương trình 7 x – 5y = 9 14 x -10y = 10. Tại sao không cần giải ta cũng kết luận được hệ phương trình này vô nghiệm ? Giải các hệ phương trình2x – 3 y = 1 3.x + 4 y =a) x – 3y b) x + 4 y = 5 x + 2y = 3; 4xー2y=2. 2 x + y = 2c) ༣ ཅོ༈ ༣ y – 0.3-0.2 = 0.5 1 3 1 0,5x + 0,4y = 1,2. 士xー一エy=士: 3. 2Hai bạn Vân và Lan đến cửa hàng mua trái cây. Bạn Vân mua 10 quả quýt, 7 quả cam với giá tiền là 17.800 đồng. Bạn Lan mua 12 quả quýt, 6 quả cam hết 18.000 đồng. Hỏi giá tiền mỗi quả quýt và mỗi quả cam là bao nhiêu ? Có hai dây chuyền may áo sơ mi. Ngày thứ nhất cả hai dây chuyền may được 930 áo. Ngày thứ hai do dây chuyền thứ nhất tăng năng suất 18%, dây chuyền thứ hai tăng năng suất 15% nên cả hai dây chuyền may được 1083 áo. Hỏi trong ngày thứ nhất mỗi dây chuyền may được bao nhiêu áo sơ mi ? Giải các hệ phương trìnhx + 3y + 22 = 8 x – 3y +22 = -7 a) { 2x + 2y + z = 6 b) K-2 x + 4y + 32 = 8 3x + y + z = 6; 3x + y — z = 5.Một cửa hàng bán áo sơ mi, quần âu nam và váy nữ. Ngày thứ nhất bán được 12 áo, 21 quần và 18 váy, doanh thu là 5.349 000 đồng. Ngày thứ hai bán được 16 áo, 24 quần và 12 váy, doanh thu là 5 600.000 đồng. Ngày thứ ba bán được 24 áo, 15 quần và 12 váy, doanh thu là 5259 000 đồng. Hỏi giá bán mỗi áo, mỗi quần và mỗi váy là bao nhiêu ? Giải các hệ phương trình sau bằng máy tính bỏ túi (làm tròn kết quả đến chữ số thập phân thứ hai)3 – 5 y = 6 –2 + 3 y = 5 a) .x – סy b) A + iy4 x + 7 y = -8; 5x + 2y = 4.Hai bạn Vân và Lan đến cửa hàng mua trái cây. Bạn Vân mua 10 quả quýt, 7 quả cam với giá tiền là 17.800 đồng. Bạn Lan mua 12 quả quýt, 6 quả cam hết 18.000 đồng. Hỏi giá tiền mỗi quả quýt và mỗi quả cam là bao nhiêu ? Có hai dây chuyền may áo sơ mi. Ngày thứ nhất cả hai dây chuyền may được 930 áo. Ngày thứ hai do dây chuyền thứ nhất tăng năng suất 18%, dây chuyền thứ hai tăng năng suất 15% nên cả hai dây chuyền may được 1083 áo. Hỏi trong ngày thứ nhất mỗi dây chuyền may được bao nhiêu áo sơ mi ? Giải các hệ phương trình

 

Bài giải này có hữu ích với bạn không?

Bấm vào một ngôi sao để đánh giá!

Đánh giá trung bình 5 / 5. Số lượt đánh giá: 1047

Chưa có ai đánh giá! Hãy là người đầu tiên đánh giá bài này.

--Chọn Bài--

Tài liệu trên trang là MIỄN PHÍ, các bạn vui lòng KHÔNG trả phí dưới BẤT KỲ hình thức nào!

Tải xuống